1. Trang chủ
  2. » Giáo án - Bài giảng

quan hệ ba cạnh của tam giác

11 604 1
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 460,5 KB

Nội dung

PHÒNG GIÁO DỤC BẮC QUANG TRƯỜNG TRUNG HỌC CƠ SỞ ĐỒNG YÊN --------------------------------------***----------------------------------- TIẾT DẠY ỨNG DỤNG CÔNG NGHỆ THÔNG TIN GV thực hiện : NGUYỄN VĂN PHONG Tổ chuyên môn : Toán D A B C * Hãy nêu quan hệ giữa cạnh và góc đối diện trong tam giác. * Cho hình vẽ Biết AD = AC. So sánh BCD và BDC Giải : Ta có : AD = AC (gt) Nên : ADC = ACD (tam giác ACD cân) Mặt khác: BCD > ACD (vì tia CA nằm giữa hai tia CB và CD) (2) Từ (1) và (2) suy ra BCD > BDC (đpcm) --------***------- * Em hãy so sánh BD và BC BD > BC Hay : BDC = ACD (1) A B C Tiết 51 : QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC BẤT ĐẲNG THỨC TAM GIÁC B C4 1 2 * Vẽ thử tam giác có độ dài các cạnh là : 1cm; 2cm; 4cm Định lý : A B C Trong một tam giác, tổng độ dài hai cạnh bất kì bao giờ cũng lớn hơn độ dài cạnh còn lại. • AB + AC > BC • AC + BC > AB • AB + BC > AC GT ABC KL I/ BẤT ĐẲNG THỨC TAM GIÁC : (SGK) Tiết 51 : QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC BẤT ĐẲNG THỨC TAM GIÁC BCD > BDC KL AB + AC > BC BC * Cho hình vẽ Biết AD = AC. So sánh BCD và BDC A B C D A B C * GT ABC Dựa vào quan hệ giữa cạnh và góc đối diện, Suy ra : BD > BC Hay : AB + AD > BC Ta có : AC = AD, suy ra : ACD = ADC = BDC (1) Vì tia CA nằm giữa hai tia CB và CD nên : BCD > ACD (2) Từ (1) và (2) ta suy ra : Trên tia đối của tia AB, lấy điểm D sao cho AD = AC Nghĩa là : AB + AC > BC (đpcm) So sánh > AB + AC Chứng minh : Tiết 51 : QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC - BẤT ĐẲNG THỨC TAM GIÁC I/ BẤT ĐẲNG THỨC TAM GIÁC : * Định lý : (SGK) GT ABC A AB + AC > BC KL AB + BC > AC AC + BC > AB B C Chứng minh : (SGK) * Các bất đẳng thức trên gọi là bất đẳng thức tam giác Từ các bất đẳng thức tam giác, ta suy ra : (1) AB > BC - AC AC > BC - AB (2) AB > AC - BC BC > AC - AB AC > AB - BC BC > AB - AC (3) II/ HỆ QUẢ CỦA BẤT ĐẲNG THỨC TAM GIÁC : * Hệ quả : (SGK) * Nhận xét : Trong một tam giác, độ dài một cạnh bao giờ cũng lớn hơn hiệu và nhỏ hơn tổng các độ dài của hai cạnh còn lại (SGK) Dựa vào kiến thức đã học, em hãy giải thích vì sao không có tam giác với độ dài 3 cạnh là : 1cm; 2cm; 4cm ? Ta có : 1 + 4 > 2 Nhưng : 1 + 2 < 4 bất đẳng thức này không đúng với bất đẳng tam giác * Lưu ý : (SGK) Từ bất đẳng thức (1) : AB + AC > BC trừ cả hai vế cho AC, ta có : AB + AC – AC > BC – AC Hay : AB > BC - AC Tương tự : AB + AC > BC, trừ cả hai vế cho AB, ta có AC > BC - AB AC + BC > AB AB > AC - BC AC – BC < AB < AC + BC ………………… < BC < …………… AC – AB AC + AB Bài tập : K 2 + 3 < 6 2 + 4 = 6 3 + 4 > 6 K C 2/ Cho tam giác ABC với hai cạnh BC = 1cm; AC = 7cm. a/ Hãy tìm độ dài cạnh AB, biết độ dài cạnh này là một số nguyên ? Giải : a/ Theo bất đẳng thức tam giác ta có : AC – BC < AB < AC + BC Thay số : 7 - 1 < AB < 7 + 1 6 < AB < 8 Vì độ dài cạnh AB là một số nguyên, nên AB = 7 b/ Tam giác ABC là tam giác gì ? b/ Tam giác ABC là tam giác cân tại A c/ 3cm; 4cm; 6cm b/ 2cm; 4cm; 6cm a/ 2cm; 3cm; 6cm 1/ Dựa vào bất đẳng thức tam giác, hãy kiểm tra xem bộ ba nào sau đây là 3 cạnh của một tam giác ? Tiết 51 : QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC - BẤT ĐẲNG THỨC TAM GIÁC I/ BẤT ĐẲNG THỨC TAM GIÁC : * Định lý : (SGK) GT ABC A AB + AC > BC KL AB + BC > AC AC + BC > AB B C Chứng minh : (SGK) * Các bất đẳng thức trên gọi là bất đẳng thức tam giác II/ HỆ QUẢ CỦA BẤT ĐẲNG THỨC TAM GIÁC : Từ các bất đẳng thức tam giác, ta suy ra : AB > BC - AC AB > AC - BC AC > BC - AB BC > AC - AB AC > AB - BC BC > AB - AC * Hệ quả : (SGK) * Nhận xét : (SGK) AC – BC < AB < AC + BC * Lưu ý : (SGK) Tiết 51 : QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC - BẤT ĐẲNG THỨC TAM GIÁC I/ BẤT ĐẲNG THỨC TAM GIÁC : * Định lý : (SGK) GT ABC A AB + AC > BC KL AB + BC > AC AC + BC > AB B C Chứng minh : (SGK) * Các bất đẳng thức trên gọi là bất đẳng thức tam giác II/ HỆ QUẢ CỦA BẤT ĐẲNG THỨC TAM GIÁC : Từ các bất đẳng thức tam giác, ta suy ra : AB > BC - AC AB > AC - BC AC > BC - AB BC > AC - AB AC > AB - BC BC > AB - AC * Hệ quả : (SGK) * Nhận xét : (SGK) AC – BC < AB < AC + BC * Lưu ý : (SGK) DẶN DÒ VỀ NHÀ - Bài : 17 ; 19 ; 20 trang 63; 64 SGK - Học thuộc các bất đẳng thức tam giác - Xem lại tính chất trung điểm của đoạn thẳng BÀI TẬP LÀM THÊM A B M C * Cho tam giác ABC, M là trung điểm cạnh BC (như hình vẽ) Nối AM. Chứng minh : AM < AB + AC 2 . thức tam giác, hãy kiểm tra xem bộ ba nào sau đây là 3 cạnh của một tam giác ? Tiết 51 : QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC - BẤT ĐẲNG THỨC TAM GIÁC. ACD (1) A B C Tiết 51 : QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC BẤT ĐẲNG THỨC TAM GIÁC B C4 1 2 * Vẽ thử tam giác có độ dài các cạnh là : 1cm; 2cm; 4cm

Ngày đăng: 06/08/2013, 01:26

HÌNH ẢNH LIÊN QUAN

* Cho hình vẽ - quan hệ ba cạnh của tam giác
ho hình vẽ (Trang 7)

TỪ KHÓA LIÊN QUAN