1. Trang chủ
  2. » Giáo án - Bài giảng

Giáo án Hình học 8 chương 3 bài 3: Tính chất đường phân giác của tam giác

5 207 2

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 276 KB

Nội dung

GIÁO ÁN HÌNH HỌC Tiết 40 TÍNH CHẤT ĐƯỜNG PHÂN GIÁC TRONG TAM GIÁC I Mục tiêu học: - Trên sở tốn cụ thể: HS vẽ hình đo, tính tốn, dự đốn, chứng minh tìm tòi kiến thức Giáo dục cho HS quy luật nhận thức: Từ trực quan sinh động , sang tư trừu tượng, tiến đến vận dụng vào thực tế Bước đầu HS biết vận dụng để tính tốn độ dài liên quan đến phân giác ngồi phân giác II Phương tiện dạy học: - GV: Compa, đo độ, bảng phụ ghi ?.1, ?.2 HS: Bảng nhóm, đo độ, compa, thước có chia khoảng III Tiến trình dạy: Hoạt động thầy Hoạt động 1: Tìm kiến thức GV cho HS thảo luận ?.1 đưa kết luận Yêu cầu HS sử dụng compa, đo độ thước để vẽ hình đo Hoạt động 2: Tìm hiểu chứng minh, tập phân tích chứng minh GV giới thiệu cho HS tìm hiểu chứng minh Sgk Dùng hình vẽ bảng u cầu HS phân tích Vì cần kẻ thêm BE//AC? Sau vẽ thêm tốn trở thành chứng minh tỉ lệ thức nào? Có cách vẽ thêm khác? GV: Trong trường hợp tia phân giác ngồi tam giác định lí có hay khơng ? GV vẽ hình u cầu HS tìm cách vẽ thêm hình Ngược lại làm cách để biết AD phân giác ? GV hướng dẫn sơ qua cách chứng minh phân giác ngồi xem tập nhà Hoạt động 3: Vận dụng kiến thức vào tập HS thảo luận nhóm ?.2 Hoạt động trò HS thảo luận nhóm trình bày A 3cm Ghi bảng Định lí A C 6cm B D C B D Ta có: AB BD 2,5   ;   AC DC AB BD  Vậy AC DC Định lí: Trong tam giác đường phân giác góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn GT  ABC, AD phân giác BAC ( D  BC) AB BD  AC DC HS quan sát: Vẽ thêm BE//AC để có  ABE cân B(E=A) KL Vẽ CE//AB với tia phân giác góc ngồi tam giác Chứng minh < Sgk/66> BE BD  mà BE = AB(  cân) Chú ý: Định lí AC DC Vẽ BE’//AC (E’  AD’) Chỉ cần dùng thước đo đoạn thẳng AB, AC, BD, CD sau tính tốn kết luận AD có phải phân giác góc BAC hay khơng mà khơng dùng thước đo góc A E’ D’ B BD' AB  (AB khác AC ) D' C AC HS thảo luận trình bày ?.2: Do DA phân giác góc BAC nên ta có: bảng nhóm C x AB 3,5    y AC 8,5 15 HS thảo luận nhóm ?.3 Cho HS nhận xét làm nhóm, bổ sung hồn chỉnh Hoạt động 4: Củng cố Bài 17 Sgk/68 Theo định lí phân giác tam giác MD phân giác tam giác AMB => kết luận ? Tương tự từ ME => kết luận ? Mà MB ? MC  kết luận ?  theo định lí Talét => ? HS thảo luận nhóm trình bày Nếu y = x = : 15=7/15 ?.3: Do AH phân giác góc EDF nên ta có: DE EH    DF HF 8,5 x  MB BD MC CE  ;  MA AD MA AE => x – = (3 8,5) : = 5,1 x = 5,1 + = 8,1 Bài tập Bài tập 17 Sgk/68 A BM = MC => BD CE  DA EA D E DE//BC B M Vì MD phân giác gócAMB C MB BD MC CE  ;  MA AD MA AE BD CE  Mà BM = MC => DA EA => => DE//BC (định lí talét) Hoạt động 5: Dặn dò - Về xem kĩ lí thuyết định lí talét, tính chất phân giác tam giác tiết sau luyện tập - BTVN: 15, 16, 18 Sgk/68 IV Rút kinh nghiệm Tiết 41: LUYỆN TẬP I Mục tiêu học: - Giúp học sinh củng cố vững chắc, vận dụng thành thạo định lí tính chất đường phân giác tam giác (thuận) để giải tốn cụ thể từ đơn giản đến khó - Rèn kĩ phân tích, chứng minh, tính tốn, biến đổi tỉ lệ thức - Rèn luyện tư logíc, thao tác phân tích lên việc tìm kiếm lời giải tốn chứng minh Qua tập, giáo dục cho học sinh tư biện chứng II Phương tiện dạy học: - GV: Bảng phụ vẽ hình 26, 27, thước, comp, tập áp dụng - HS: Bảng nhóm, thước, compa III Tiến trình dạy: Hoạt động thầy Hoạt động 1: KTBC - Phát biểu định lí đường phân giác tam giác? Áp dụng: GV treo Bt bảng phụ Hoạt động trò HS phát biểu chỗ Phân giác => BD DC  AB AC Ta áp dụng tính chất Tính chất tỉ lệ thức để tìm BD DC? Cho HS đứng chỗ thực HS thực chỗ Bài 19: GT? KL? Muốn chứng minh D C GT AD phân giác BAC AB = 3cm, AC=5cm BC = 6cm KL BD=? ; DC = ? Chứng minh Vì AD phân giác BAC BD DC  (theo T/c tỉ lệ thức ) AB AC BD DC BD  DC     35 3.7 21 5.7 35  BD   ; DC   8 8 Vậy BD= 21/8 cm; DC= 35/8 cm GT: Hình thang ABCD, a//DC Bài 18 Sgk/68 < Cắt AD E, BC F KTBC> AE FB Bài 19 Sgk/68  KL: ED FC A B AE BF DE CF  ;  AE FB AD BC DA CB  ta dựa vào kiến thức ED FC Định lí talét thơng qua NB / ND nào? Thơng qua tỉ số ? Vậy ta phải áp dụng định lí 5cm ( BC = cm) HS nêu chỗ Bài 18 em nhà làm tương tự tập A 3cm B GT? KL? AD tam giác ABC? => tỉ lệ thức ? Ghi bảng Áp dụng định lí talét cho tam E F N D C talét cho tam giác ? giác ABD tam giác BDC HS thực lên thực hiện, số lại làm nháp HS thực hiện, số lại làm Cho HS nhận xét, bổ sung chỗ nháp hồn chỉnh => GT: Hình thang ABCD, GT? KL? AB//CD Muốn chứng minh OE = OF ta AC  BD= O, a qua O, a//AB phải chứng minh tỉ lệ cắt AD E, cắt BC F thức nào? KL: OE = OF phải tỉ lệ nào? Áp dụng tính chất hay định lí nào? AE FB ? Mặt khác ED FC => AE BN  (1) ED ND Vì NF // DC theo định lí talét: Tương tự ta suy hai tỉ lệ thức lại (coi tập nhà) OE OF  Muốn có ta AB AB Chứng minh Gọi N = EF  BD Vì EN // AB theo định talét: OE OF  * AB AB OE EA OF BF  ;  AB ED AB FC Áp dụng điịnh lí talét GV cho HS tự trình bày lại Bằng a//AB//CD tập trình bày nhanh phần chứng minh HS tự chứng minh trình bày GT? KL? nhanh GT:  ABC , MB=MC, AD phân giác, AB=m, AC=n; n>m SABC = S AM  ABC => KL KL: a Tính SAMD b n=7cm, m=3cm, SAMD=? SABM SACM %SABC Để tìm SADM ta phải tìm *AM trung tuyến diện tích ? => SABM = SACM SABM=? Còn SABD tính SAMB SAMD ? SAMB= ½ SABC AD phân giác nên hai đường cao tam giác ABD ACD với nhau? => SABD : SACD =? Hai đường cao SABC = S?+S? (dựa vào AD) SABD =? (nếu đường cao có độ SABD : SACD = m : n dài h) SABC = SABD + SACD SABD = ½ h.m FB BN  FC ND Từ (1) (2) (2) AE FB  ED FC Tương tự áp dụng định lí talét ta có: AE BF DE CF  ;  AD BC DA CB Bài 20 Sgk/68 A E O B F a D C Vì EF // BC //AB theo định lí talét ta có: OE EA OF BF  ;  (1) AB ED AB FC Mặt khác a // AB//CD => AE FB  (2) ED FC OE OF  AB AB Từ (1) (2) => => OE = OF (đpcm) Bài 21 Sgk/68 A m n h h B D M C a Vì AM trung tuyến  ABC => SABM = SACM Vì AD phân giác BAC Nên hai đường cao từ D đến AB AC h => SABD : SACD = m : n SABC = SABD + SACD = ½ h.(n+m) => S ABD ? S ABC S ABD m  S ABC n  m m SABD = S nm => SABD=? Bây ta phải xem SABM SABD có diện tích lớn hơn, dựa vào yếu tố ? Vì n > m => BD < DC nên D => SADM = ? nằm B M Câu b em nhà thay số SADM = SABM - SABD tính xem SAMD =? % SABC SABD = ½ h.m S ABD m  ( SABC = S) S ABC n  m m => SABD = S nm => Vì n > m => BD < DC nên D nằm B M => SADM = SABM - SABD m S nm n m m = S( ½ )=S( ) 2(n  m) nm =½S- Hoạt động 2: Dặn dò - Về xem kĩ lí thuyết dạng tập làm, xem lại kiến thức tỉ lệ thức, chuẩn bị trước tiết sau học: “ Khi hai tam giác gọi đồng dạng” IV Rút kinh nghiệm ...x AB 3, 5    y AC 8, 5 15 HS thảo luận nhóm ? .3 Cho HS nhận xét làm nhóm, bổ sung hồn chỉnh Hoạt động 4: Củng cố Bài 17 Sgk/ 68 Theo định lí phân giác tam giác MD phân giác tam giác AMB =>... DC BD  DC     3 5 3. 7 21 5.7 35  BD   ; DC   8 8 Vậy BD= 21 /8 cm; DC= 35 /8 cm GT: Hình thang ABCD, a//DC Bài 18 Sgk/ 68 < Cắt AD E, BC F KTBC> AE FB Bài 19 Sgk/ 68  KL: ED FC A B AE BF... 1: KTBC - Phát biểu định lí đường phân giác tam giác? Áp dụng: GV treo Bt bảng phụ Hoạt động trò HS phát biểu chỗ Phân giác => BD DC  AB AC Ta áp dụng tính chất Tính chất tỉ lệ thức để tìm BD

Ngày đăng: 23/02/2018, 14:47

TỪ KHÓA LIÊN QUAN

w