1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Phương pháp phân tích thành nhân tử trong việc giải phương trình lượng giác trần thông

32 372 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 32
Dung lượng 836,89 KB

Nội dung

HỘI TOÁN BẮC NAM MỖI THÁNG MỘT CHỦ ĐỀ MỖI THÁNG MỘT CHỦ ĐỀ PHƢƠNG PHÁP PHÂN TÍCH THÀNH NHÂN TỬ TRONG VIỆC GIẢI PHƢƠNG TRÌNH LƢỢNG GIÁC Tháng 07, năm 2017 Trần Thông Trang HỘI TOÁN BẮC NAM MỖI THÁNG MỘT CHỦ ĐỀ A MỞ ĐẦU Phương trình lượng giác vấn đề quan trọng quen thuộc chương trình toán học bậc THPT đề thi tuyển sinh đại học Việc giải thành thạo phương trình lượng giác trở thành nhiệm vụ mong muốn học sinh Tuy nhiên, phong phú công thức lượng giác gây khó khăn cho học sinh việc định hướng lời giải Nếu định hướng không tốt dẫn đến biến đổi vòng vo, không giải lời giải dài dòng, không đẹp Cản trở phần làm nản chí em học sinh Một số em sợ học xác định bỏ phần phương trình lượng giác Với mong muốn giúp học sinh khắc phục khó khăn này, viết viết Bài viết đưa số định hướng biến đổi phương trình dựa dấu hiệu đặc biệt Nhờ học sinh nhanh chóng tìm lời giải toán, tiết kiệm thời gian, tự tin trước phương trình lượng giác Bài viết chia thành ba phần: Phần A: Trình bày cần thiết nội dung viết Phần B: Nội dung viết, phần chia thành mục nhỏ I Nhận dạng nhân tử chung dựa vào đẳng thức II Phƣơng trình bậc sin x , cos x III Nhẩm nghiệm đặc biệt để xác định nhân tử chung IV Sử dụng công thức đặc biệt V Thay số đẳng thức lƣợng giác Phần C: Trình bày số tập tương tự Tuy cố gắng, mong muốn viết có chất lượng tốt hạn chế thời gian hiểu biết nên không tránh khỏi thiếu sót, mong nhận góp ý chân thành bạn đồng nghiệp cấp để viết hoàn thiện Trần Thông Trang HỘI TOÁN BẮC NAM MỖI THÁNG MỘT CHỦ ĐỀ Mọi ý kiến đóng góp độc giả xa gần vui lòng gửi địa mail: thongqna@gmail.com Quảng Nam, ngày 15 tháng 07 năm2017 TRẦN THÔNG Trần Thông Trang HỘI TOÁN BẮC NAM MỖI THÁNG MỘT CHỦ ĐỀ B PHƢƠNG PHÁP PHÂN TÍCH THÀNH NHÂN TỬ TRONG VIỆC GIẢI PHƢƠNG TRÌNH LƢỢNG GIÁC I Nhận dạng nhân tử chung dựa vào đẳng thức Khi phương trình lượng giác xuất biểu thức có dấu hiệu nhân tử chung nhận dạng ta biến đổi hướng dễ dàng giải Việc phát nhân tử chung đòi hỏi phải nắm đẳng thức Sau số đẳng thức quen thuộc:  Nhân tử sin x  cos x :  cos x  cos x  sin x  (cos x  sin x)(cos x  sin x)   sin x  (sin x  cos x)   tan x  cos x  sin x cos x   cot x  sin x  cos x sin x     sin  x    cos  x    sin x  cos x 4 4     Nhân tử sin x  cos x :  cos x  cos x  sin x  (cos x  sin x)(cos x  sin x)   sin x  (sin x  cos x)   tan x  cos x  sin x cos x   cot x  sin x  cos x sin x  Trần Thông     sin  x     cos  x    sin x  cos x 4 4   Trang HỘI TOÁN BẮC NAM MỖI THÁNG MỘT CHỦ ĐỀ  Nhân tử  sin x : cos2 x  (1  sin x )(1  sin x )  Nhân tử  cos x : sin x  (1  cos x )(1  cos x )  Nhân tử  2sin x :  4cos x    4sin x  (1  2sin x)(1  2sin x)  cos3x  cos x(4cos x  3)  cos x(1  2sin x)(1  2sin x)  Nhân tử  2cos x :  4sin x    4cos x  (1  2cos x)(1  2cos x)  sin 3x  sin x(3  4sin x)  sin x(2cos x  1)(2cos x  1)  Một số đẳng thức khác:  cot x  tan x  2cot x  tan x  cot x   cos3x  sin 3x  (cos x  sin x)(1  2sin x)  cos3x  sin 3x  (cos x  sin x)(1  2sin x) sin x Để thấy rõ tầm quan trọng lợi ích đẳng thức ta xem vài ví dụ Ví dụ 1.1(ĐH 2007 – KA) Giải phương trình: (1  sin x)cos x  (1  cos x)sin x   sin x (1.1) Phân tích: Khai triển vế trái phương trình thấy đối xứng với sin x,cos x nên xuất nhân tử sin x  cos x Vế phải  sin x  (sin x  cos x) chứa nhân tử sin x  cos x Vì ta có lời giải Giải: Trần Thông Trang HỘI TOÁN BẮC NAM MỖI THÁNG MỘT CHỦ ĐỀ Pt 1.1  sin x  cos x  sin x cos x(sin x  cos x)  (sin x  cos x)  (sin x  cos x)(1  sin x cos x  sin x  cos x)   (sin x  cos x)(1  sin x)(1  cos x)     x    k sin x  cos x      sin x    x   k 2   cos x   x  k 2   (k  ) Vậy phương trình có họ nghiệm Ví dụ 1.2(ĐH 2005 – KB) Giải phương trình:  sin x  cos x  sin x  cos2 x  (1.2) Phân tích: Vì phương trình xuất sin x  cos x,1  sin x,cos x nên dễ dàng nhận thấy nhân tử sin x  cos x Giải: pt(1.2)  sin x  cos x  (sin x  cos x)  cos x  sin x   sin x  cos x  (sin x  cos x)  (cos x  sin x)(cos x  sin x )   (sin x  cos x)(1  sin x  cos x  cos x  sin x)   (sin x  cos x)(1  2cos x)    x    k sin x  cos x      (k  ) cos x    x    k 2   Vậy phương trình có họ nghiệm Ví dụ 1.3 Giải phương trình:  5  sin x  4sin   x   4(sin x  cos x)   Trần Thông (1.3) Trang HỘI TOÁN BẮC NAM MỖI THÁNG MỘT CHỦ ĐỀ Phân tích: Pt(1.3)  2sin x cos x  4cos x  4(sin x  cos x)  Vậy phương trình chứa nhân tử sin x  cos x Giải: Pt(1.3)  2sin x cos x  4cos x  4(sin x  cos x)   2sin x(cos x  sin x)  4(cos x  sin x)  4(sin x  cos x)   4sin x cos x(cos x  sin x)(cos x  sin x)  4(cos x  sin x)(cos x  sin x)  4(sin x  cos x)   (sin x  cos x)  sin x cos x(cos x  sin x)  cos x  sin x  1  (1.3.1) sin x  cos x   sin x cos x(cos x  sin x)  cos x  sin x   (1.3.2) Giải (1.3.1): sin x  cos x   x     k , k    Giải (1.3.2): Đặt t  cos x  sin x  cos  x   ,   t  Phương trình 4  (1.3.2) trở thành: 1 t2 t  t    t  3t    t   x  k 2    (k  ) Với t   cos  x      x    k     Vậy phương trình có họ nghiệm Ví dụ 1.4(ĐH 2003 – KA) Giải phương trình: cot x   cos x  sin x  sin x (1.4)  tan x Phân tích: Phương trình có chứa cot x  1, cos x nên ta nghĩ đến nhân tử chung sin x  cos x Giải: Trần Thông Trang HỘI TOÁN BẮC NAM  MỖI THÁNG MỘT CHỦ ĐỀ  ĐKXĐ: x  k , x    k cos x  sin x cos x(cos x  sin x) Pt(1.4)    sin x  sin x cos x sin x sin x  cos x cos x  sin x cos x(cos x  sin x)(cos x  sin x)    sin x(sin x  cos x) sin x sin x  cos x  (cos x  sin x)(1  sin x cos x  sin x)   cos x  sin x   x   k , k  (tm)    cos x 1  sin x   0  2 sin x  cos x  (vn) Vậy phương trình có họ nghiệm Ví dụ 1.5(ĐH 2008 – KD) Giải phương trình: 2sin x(1  cos x)  sin x   2cos x (1.5) Phân tích: Phương trình xuất  sin x, cos x, cos x  sin x nên dễ thấy phương trìnhnhân tử cos x  sin x Giải: Pt(1.5)  2sin x  2cos x  2sin x(cos x  sin x)  2sin x cos x    2(sin x  cos x)  2sin x(cos x  sin x)(cos x  sin x)  (sin x  cos x)   (sin x  cos x)(2  2sin x cos x  2sin x  sin x  cos x)   (sin x  cos x)(2sin x cos x  2cos x  sin x  cos x)   (sin x  cos x) (2cos x  1)    x   k sin x  cos x     (k  ) cos x    x   2  k 2   Vậy phương trình có họ nghiệm Ví dụ 1.6 Giải phương trình: cos x  cos x  sin x  Trần Thông (1.6) Trang HỘI TOÁN BẮC NAM MỖI THÁNG MỘT CHỦ ĐỀ Phân tích: Phương trình chứa sin x , tức chứa sin x  (1  cos x)(1  cos x) Như nhân tử phương trình cos x  Giải: Pt(1.6)  cos x(cos x  1)  sin x(1  cos x)   cos x(cos x  1)  sin x(1  cos x)(1  cos x)   (cos x  1)(cos x  sin x  sin x cos x)  (1.6.1) cos x  1  cos x  sin x  sin x cos x  (1.6.2) Giải (1.6.1): cos x  1  x    k 2 , k    Giải (1.6.2): Đặt t  sin x  cos x  cos  x   ,   t  Phương trình 4  (1.6.2) trở thành: t   ( l ) t  2t      t   (tm) 1    1   Với t    cos  x     x   arccos    k 2 , k  4    Vậy phương trình có họ nghiệm cos x(cos x  1)  2(1  sin x) Ví dụ 1.7 Giải phương trình: sin x  cos x (1.7) Phân tích: Nhìn vào phương trình dựa vào đẳng thức dễ dàng suy  sin x nhân tử chung Giải: ĐKXĐ: x   Trần Thông   k , k  Trang HỘI TOÁN BẮC NAM MỖI THÁNG MỘT CHỦ ĐỀ Pt(1.7)  (1  sin x)(1  sin x)(cos x  1)  2(1  sin x)(sin x  cos x)  (1  sin x)(cos x  sin x cos x  sin x   2sin x  2cos x)   (1  sin x)(cos x  sin x cos x  sin x  1)   (1  sin x) (cos x  1)    x    k 2 sin x  1   (k  ) cos x  1  x    k 2  Vậy phương trình có họ nghiệm Ví dụ 1.8 Giải phương trình: 4cos x  (2sin x  1)(2sin x  1)  (1.8) Phân tích: Trong phương trình có 4cos x  tức chứa nhân tử 2sin x  Giải: Pt(1.8)   4sin x  (2sin x  1)(2sin x  1)   (1  2sin x)(1  2sin x)  (2sin x  1)(2sin x  1)   (1  2sin x)(sin x  2sin x cos x)   sin x(1  2sin x)(1  2cos x)   x  k    sin x   x   k 2      sin x   (k  ) 5   k 2 x    cos x      x    k 2 Vậy phương trình có họ nghiệm Trần Thông Trang 10 HỘI TOÁN BẮC NAM MỖI THÁNG MỘT CHỦ ĐỀ Pt(3.1)  4cos x  3cos x  2cos   2sin x cos x  sin x  5cos x    4cos3 x  2cos x  8cos x   sin x(2cos x  1)   (2cos x  1)(2cos x  4)  sin x(2cos x  1)   (2cos x  1)(2cos x  sin x  4)   cos x   2    x  k 2 , k    2sin x  sin x   (vn) Vậy phương trình có họ nghiệm Ví dụ 3.2 Giải phương trình: sin3x  3sin x  2cos2 x  3sin x  3cos x   (3.2) Phân tích: Nhẩm nghiệm thấy phương trình có hai nghiệm đặc biệt 30,150 nên có nhân tử 2sin x  Giải: Pt(3.2)  3sin x  4sin x  6sin x cos x  2sin x   3sin x  3cos x    4sin x  2sin x  6sin x   3cos x(2sin x  1)   (2sin x  1)(2sin x  3)  3cos x(2sin x  1)   (2sin x  1)(2sin x  3cos x  3)   sin x  (3.2.1)    2cos x  3cos x   (3.2.2)   x   k 2  Giải (3.2.1): sin x    (k  )  x   k 2   x  k 2 cos x  (k  ) Giải (3.2.2): 2cos x  3cos x        cos x  x    k 2   Vậy phương trình có họ nghiệm Trần Thông Trang 18 HỘI TOÁN BẮC NAM MỖI THÁNG MỘT CHỦ ĐỀ IV Sử dụng công thức đặc biệt Một số công thức thường dùng:      sin x  cos x  2sin  x    2cos  x   3 6        sin x  cos x  2sin  x    2cos  x   3 6        sin x  cos x  2sin  x    2cos  x   6 3        sin x  cos x  2sin  x    2cos  x   6 3   Dấu hiệu nhân dạng phương trình giải theo phương pháp phương trình có chứa số là: Hai hướng biến đổi phương trình loại + Đưa phương trình dạng cos A  cos B sin A  sin B + Đưa phương trình bậc hàm số lượng giác  Dạng 1: Đưa phương trình dạng cos A  cos B sin A  sin B Ví dụ 4.1 Giải phương trình: 4sin x 3    cos x   2cos  x     (4.1) Giải: Ta có:   Pt(4.1)  2(1  cos x)  cos x    cos  x   2     cos( x   )  sin x  cos x  cos( x   )  cos  x   2 6  Trần Thông Trang 19 HỘI TOÁN BẮC NAM MỖI THÁNG MỘT CHỦ ĐỀ  7   x   x    k  x   k 2   6   (k  )  x     x    k 2  x   5  k 2  18  Vậy phương trình có họ nghiệm Ví dụ 4.2 Giải phương trình:   2cos   2x   cos 4x  4cos x  4  (4.2) Giải: Ta có:   Pt(4.2)   cos   4x   cos 4x  2(1  cos 2x)  2     sin 4x  cos 4x  2cos 2x  cos  4x    cos 2x 6       4x   2x  k2  x  12  k   (k  )     4x   2x  k2 x  k   36 Vậy phương trình có họ nghiệm Ví dụ 4.3 Giải phương trình: 2cos3 x.cos x  3(1  sin x) 2  2 cos   x  4  (4.3) Giải: ĐKXĐ: x  Trần Thông  k  , k  Khi đó: Trang 20 HỘI TOÁN BẮC NAM MỖI THÁNG MỘT CHỦ ĐỀ     Pt(4.3)  cos x  cos x   sin x  1  cos  x        sin x  cos x  ( sin x  cos x)          sin  x     sin  x    sin  x    sin  2 x   6 6 6 6           x    x   k  x    k   6 18   (k  )     x     x   k 2  x   k   6 Vậy phương trình có họ nghiệm Ví dụ 4.4 Giải phương trình: 2cos2 x  2cos2 x  4sin x  cos4 x   3sin3x cos x (4.4) Giải: Ta có: Pt(4.4)  2cos x  2cos x  8sin x cos3 x  sin x cos x  4sin x sin x  8sin x cos3 x  sin x cos x   x  k  sin x    cos3 x  cos  x     2cos3 x  sin x  cos x    6    x  k      x    k  12    x  k  24 (k  ) Vậy phương trình có họ nghiệm Trần Thông Trang 21 HỘI TOÁN BẮC NAM  MỖI THÁNG MỘT CHỦ ĐỀ Dạng 2: Đưa phương trình bậc hàm số lượng giác Ví dụ 4.5 Giải phương trình:   sin x  cos x  cos 2x  sin 2x (4.5) Giải: Ta có: 1  3 Pt(4.5)   sin x  cos x   sin x  cos x  2 2        sin  x    cos  x    3 6          2sin  x   cos  x    cos  x    6  6 6   2  x   k      cos  x          x    k 2 (k  )    12  Vậy phương trình có  17 sin  x     6   x   k 2 họ nghiệm  12 Nhận xét: Biểu thức hàm số lượng giác 2x nhóm với với   , x gắn với 2x nhóm 2  , x gắn với để sử dụng công thức nhân đôi đưa phương bậc đối 3 với hàm số lượng giác Ví dụ 4.6 Giải phương trình: 3(sin2x+sinx)+cos2x-cosx=2 (4.6) Giải: Ta có: Trần Thông Trang 22 HỘI TOÁN BẮC NAM MỖI THÁNG MỘT CHỦ ĐỀ Pt(4.6)  sin x  cos x  sin x  cos x   3 sin x  cos x  sin x  cos x   2 2      cos  x    sin  x     3 6         2sin  x    sin  x  6    0    x   k      sin  x          x   k 2 (k  )     sin x       6    x    k 2  Vậy phương trình có họ nghiệm Ví dụ 4.7 Giải phương trình: cos 2x  3sin 2x  cos x  4sin x   (4.7) Giải: Ta có:   Pt(4.7)  cos 2x  sin 2x   cos x  sin x    2     cos 2 2     cos 2x  sin sin 2x   sin cos x  cos sin x    3 3   2        2  cos  2x    4sin  x     4sin  x    8sin  x      3 3 3          x    k2 sin  x    (vn)      (k  )      x   k2 sin  x        Trần Thông Trang 23 HỘI TOÁN BẮC NAM MỖI THÁNG MỘT CHỦ ĐỀ Vậy phương trình có họ nghiệm Ví dụ 4.8 Giải phương trình: 3cos x  sin x  3(cos2 x  sin x) (4.8) Giải: Pt(4.8)  sin x  3cos2 x  3cos x  sin x    sin(2 x  )  cos( x  )        cos  x    2sin  x       6      x   k       cos  x          x   k 2      sin  x    6  x    k 2    (k  ) Vậy phương trình có họ nghiệm Ví dụ 4.9 Giải phương trình: 1  sin x   2sin x    sin x  3cos x  (4.9) Giải: Pt(4.9)   3sin x  cos x  sin x  3 cos x  cos x  sin x  3( cos x  sin x)        cos  x    3cos  x     3 6        2cos  x    3cos  x     6 6   5  x   k 2      cos  x    1        x   k 2  k      cos x        6    x   5  k 2   Vậy phương trình có họ nghiệm Trần Thông Trang 24 HỘI TOÁN BẮC NAM MỖI THÁNG MỘT CHỦ ĐỀ V Thay số đẳng thức lƣợng giác Trong nhiều toán thay khéo léo số giá trị lượng giác hay biểu thức lượng giác cho cách giải ngắn gọn Sau ta xét vài ví dụ Ví dụ 5.1 Giải phương trình: 2cos x  sin x cos x   cos x  sin x (5.1) 2cos x Giải : Đk : x     k , k  Khi : 3cos x  cos x sin x  sin x Pt(5.1)   cos x  sin x 2cos x       cos x  sin x    cos x  sin x cos x     cos  x     cos x  sin x  6      cos x  sin x  2cos x cos  x    cos x      x   k      x   k 2 (k  )    x     k 2  18 Vậy phương trình có họ nghiệm 2(cos x  sin x)  Ví dụ 5.2 Giải phương trình :  cos x  sin x x  2cos(  ) (5.2) Giải: Đk: x  5  k 2 , k  Khi Trần Thông Trang 25 HỘI TOÁN BẮC NAM MỖI THÁNG MỘT CHỦ ĐỀ x  Pt(5.2)  2cos x  2sin x   2cos    cos x  sin x 2 3 x   3cos x  sin x  2cos    cos x  sin x 2 3     cos x  sin x    x  cos x  sin x  2cos    2 3   cos x  sin x      cos x  sin x  cos  x         x      cos x  sin x  2cos     x   cos x   cos      2 3   2 3   2   x   k    x    k 4   4 x   k  (k  ) Vậy phương trình có họ nghiệm      Ví dụ 5.3 Giải phương trình: 4sin  x   sin  x    1  2cos x  (5.3) 6   6   Giải :       Pt(5.3)  4sin  x   sin  x    1  2cos x  2cos 6   6             sin  x   cos  x    1   sin  x   sin  x   6   3  6  6            sin  x    2sin  x    sin  x      6     Trần Thông Trang 26 HỘI TOÁN BẮC NAM MỖI THÁNG MỘT CHỦ ĐỀ      sin x  x    k  0   6         sin  x      x   k 2 (k  )  6    x    k 2     sin  x     6   Vậy phương trình có họ nghiệm C BÀI TẬP TƢƠNG TỰ sin x  2cos2 x   sin x  4cos x 2sin x  cos2 x  7sin x  2cos x  9sin x  6cos x  3sin x  cos2 x  4(sin x  cos4 x)  3sin x   sin x  cos3 x  sin x  (sin x  cos x)   cos(2 x  )  cot x   cos x sin 2 x  cos x  sin ( x  )  4 2(sin x  cos x)cos x   cos2 x 10 cos x  sin x  cos x  sin x  11 5(sin x  cos3 x  sin x )   cos x  2sin x 12 2sin x  1  2cos3 x  sin x cos x x 3x x 3x 13 cos x cos cos  sin x sin sin  2 2 Trần Thông Trang 27 HỘI TOÁN BẮC NAM 14 sin MỖI THÁNG MỘT CHỦ ĐỀ 5x x  5cos3 x sin 2  15 tan3 ( x  )  tan x  Hƣớng dẫn giải số tập sin x  2cos2 x   sin x  4cos x  2sin x cos x  2(2cos x  1)   sin x  4cos x   sin x(2cos x  1)  4cos x  4cos x    sin x(2cos x  1)  (2cos x  1)(2cos x  3)   (2cos x  1)(2sin x  2cos x  3)   cos x     x    k 2   2sin x  2cos x  3,(vn) 2sin x  cos2 x  7sin x  2cos x   4sin x cos x  (1  2sin x)  7sin x  2cos x    2cos x(2sin x  1)  (2sin x  7sin x  3)   2cos x(2sin x  1)  (2sin x  1)(sin x  3)   (2sin x  1)(2cos x  sin x  3)    x   k 2  2sin x       2cos x  sin x  3,(vn)  x  5  k 2  9sin x  6cos x  3sin x  cos2 x   6sin x cos x  6cos x  2sin x  9sin x    6cos x(sin x  1)  (sin x  1)(2sin x  7)   (sin x  1)(6cos x  2sin x  7)  sin x      x   k 2 6cos x  2sin x  4(sin x  cos4 x)  3sin x   4[(sin x  cos2 x)2  2sin x cos2 x]  3sin x   4(1  sin 2 x)  sin x   cos4 x  3sin x  2 Trần Thông Trang 28 HỘI TOÁN BẮC NAM MỖI THÁNG MỘT CHỦ ĐỀ    x   k   x     k   12  sin x  cos3 x  sin x   sin x  2(sin x  cos x)(1  sin x cos x)   (2  sin x)  (sin x  cos x)(2  sin x)   (2  sin x)(sin x  cos x  1)   sin x  cos2 x  1   x    k    sin(2 x  )     x    k  Điều kiện: sin x   x  k   cos x (*)   cot x    cot x   cos x  cos x cos x  1  sin x  cos x  sin x(1  cos x)  cos x(1  cos x)  sin x  sin x cos x  cos x(1  cos x)   cos x(sin x  cos x  1)  cos x    sin x  cos x  1  cos x   x   k    x    k     sin x  cos2 x  1  sin(2 x  )  sin( )   4  x    k  Vậy,phương trình có nghiệm: x    k  1   (1  cos x)2  [1  cos(2 x  )]2  4 4 2  (1  cos x)  (1  sin x)   sin x  cos2 x  1 cos x  sin ( x  Trần Thông ) Trang 29 HỘI TOÁN BẮC NAM MỖI THÁNG MỘT CHỦ ĐỀ   x   k 2   3  cos(2 x  )  cos  4  x     k    x    k  12 11 Điều kiện: sin x     ,k   x  k  12 cos3 x  sin x sin x  2sin x sin x  cos3 x  sin x )5 Ta có: 5(sin x   2sin x  2sin x sin x  cos x  cos3 x  cos3 x  sin x 5  2sin x (sin x  sin x)  cos x 2sin x cos x  cos x 5 5  2sin x  2sin x (2sin x  1)cos x 5  5cos x  2sin x (1)  5cos x  cos x   2cos x  5cos x     cos x   x    k 2 12 Điều kiện: sin x   x  k (*)  2(sin x  cos3 x)   1  sin x cos x  2[3(sin x  cos x)  4(sin x  cos3 x]  1  sin x cos x  2(sin x  cos x)[3  4(sin x  sin x cos x  cos x)]  sin x  cos x 0 sin x cos x  (sin x  cos x)(2  8sin x cos x  )0 sin x cos x  (sin x  cos x)(4sin x   2)  sin x  (sin x  cos x)(4sin 2 x  2sin x  2)  sin x  cos x sin x cos x  2(sin x  cos x)(1  4sin x cos x)  Trần Thông Trang 30 HỘI TOÁN BẮC NAM MỖI THÁNG MỘT CHỦ ĐỀ    x    k  tan x  1  sin x  cos x      sin x    x    k    12  4sin x  2sin x   sin x  1 /  7 x  k  12 x 3x x 3x 13 cos x cos cos  sin x sin sin  2 2 1  cos x(cos x  cos x)  sin x(cos x  cos x)  2 2  cos x cos x  cos x  sin x cos x  sin x cos x   cos x(sin x  cos x)   sin x  sin x cos x    cos x(sin x  cos x)  sin x(sin x  cos x)   (sin x  cos x)(cos x  sin x)   (sin x  cos x)(2sin x  sin x  1)   sin x  cos x    2sin x  sin x     x    k   tan x  1     sin x  1   x    k 2   sin x  /   5  x   k 2  x   k 2 6  14 Ta thấy: cos x   x    k 2  cos x  1 Thay vào phương trình (*) ta được: 5   5k )   sin(  k ) không thỏa mãn với k 2 x Do cos không nghiệm phương trình nên: 5x x x x (*)  sin cos  5cos3 x sin cos  (sin 3x  sin x)  cos3 x sin x 2 2 2  3sin x  4sin3 x  2sin x cos x  5cos3 x sin x  sin(  sin x(3  4sin x  2cos x  5cos3 x)  Trần Thông Trang 31 HỘI TOÁN BẮC NAM MỖI THÁNG MỘT CHỦ ĐỀ  sin x(5cos3 x  4cos2 x  2cos x  1)  sin x  x  k     cos x  x  k 2      cos x  1  21   x   arccos 1  21  k 2 10 10     1  21 1  21  k 2  cos x   x   arccos 10 10   1  21  k 2 Vậy,phương trình có nghiệm: x  k 2 , x   arccos 10 1  21 x   arccos  k 2 10      sin(  x )cos(  x )  sin(  x)    4 15 Điều kiện:    cos x     sin(  x)cos(  x)  sin(  x)    4    tan x  tan x tan(  x) tan(  x)  1 4  tan x  tan x (1)  sin x  cos4 x  cos4 x   2sin 2 x cos2 x  cos4 x 1   sin x  cos4 x   (1  cos2 x)  cos4 x 2  2cos4 x  cos2 x    cos2 x    cos2 x   sin x   x  k Vậy,phương trình có nghiệm: x  k Trần Thông   Trang 32 ... tháng 07 năm2017 TRẦN THÔNG Trần Thông Trang HỘI TOÁN BẮC NAM MỖI THÁNG MỘT CHỦ ĐỀ B PHƢƠNG PHÁP PHÂN TÍCH THÀNH NHÂN TỬ TRONG VIỆC GIẢI PHƢƠNG TRÌNH LƢỢNG GIÁC I Nhận dạng nhân tử chung dựa vào... Dấu hiệu nhân dạng phương trình giải theo phương pháp phương trình có chứa số là: Hai hướng biến đổi phương trình loại + Đưa phương trình dạng cos A  cos B sin A  sin B + Đưa phương trình bậc...  k 2  Vậy phương trình có họ nghiệm Ví dụ 1.8 Giải phương trình: 4cos x  (2sin x  1)(2sin x  1)  (1.8) Phân tích: Trong phương trình có 4cos x  tức chứa nhân tử 2sin x  Giải: Pt(1.8)

Ngày đăng: 05/09/2017, 12:58

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w