1. Trang chủ
  2. » Giáo Dục - Đào Tạo

de luyen thi thpt quoc gia so 10

6 86 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 375,82 KB

Nội dung

Gia sư Thành Được www.daythem.edu.vn ĐỀ TỰ LUYỆN THPT QUỐC GIA NĂM HỌC 2014- 2015 Môn: TOÁN Thời gian làm bài: 180 phút Câu ( 2,0 điểm) Cho hàm số y   x3  3mx  (1) a*) Khảo sát biến thiên vẽ đồ thị hàm số (1) m  b*) Tìm m để đồ thị hàm số (1) có điểm cực trị A, B cho tam giác OAB vuông O ( với O gốc tọa độ ) Câu (1,0 điểm) a*) Giải phương trình sin x   6sin x  cos x b*) Tìm số phức z biết iz  (2  i) z  3i  52 x1  6.5x   Câu 3* (0,5 điểm) Giải phương trình x3  2ln x dx x  x  xy  x  y  y  y  Câu (1,0 điểm) Giải hệ phương trình    y  x   y 1  x 1 Câu (1,0 điểm) Cho hình chóp S ABC có tam giác ABC vuông A , AB  AC  a , I trung điểm SC , hình chiếu vuông góc S lên mặt phẳng  ABC  trung điểm H Câu 4* (1,0 điểm) Tính tích phân I   BC , mặt phẳng  SAB  tạo với đáy góc 60 Tính thể tích khối chóp S ABC tính khoảng cách từ điểm I đến mặt phẳng  SAB  theo a Câu (1,0 điểm) Trong mặt phẳng với hệ toạ độ Oxy cho tam giác ABC có A 1;  , tiếp tuyến A đường tròn ngoại tiếp tam giác ABC cắt BC D , đường phân giác ADB có phương trình x  y   , điểm M  4;1 thuộc cạnh AC Viết phương trình đường thẳng AB Câu 8* (1,0 điểm) Trong không gian với hệ toạ độ Oxyz , cho điểm A  4;1;3 đường x 1 y 1 z    Viết phương trình mặt phẳng ( P ) qua A vuông góc với 2 đường thẳng d Tìm tọa độ điểm B thuộc d cho AB  27 thẳng d : Câu (0,5 điểm) b) Một tổ có học sinh nam học sinh nữ Giáo viên chọn ngẫu nhiên học sinh để làm trực nhật Tính xác suất để học sinh chọn có nam nữ Câu 10 (1,0 điểm) Cho a, b, c số dương a  b  c  Tìm giá trị lớn biểu thức: P bc 3a  bc  ca 3b  ca  ab 3c  ab …….Hết……… Câu Nội dung Điểm Gia sư Thành Được www.daythem.edu.vn a.(1,0 điểm) Vơí m=1 hàm số trở thành : y   x3  3x  TXĐ: D  R y '  3x  , y '   x  1 0.25 Hàm số nghịch biến khoảng  ; 1 1;   , đồng biến khoảng  1;1 0.25 Hàm số đạt cực đại x  , yCD  , đạt cực tiểu x  1 , yCT  1 lim y   , lim y   x  x  * Bảng biến thiên x – y’ + y + -1 + – 0.25 + - -1 Đồ thị: 0.25 2 b.(1,0 điểm) y '  3x  3m  3  x  m  0.25 y '   x  m  * Đồ thị hàm số (1) có điểm cực trị  PT (*) có nghiệm phân biệt  m  **   Khi điểm cực trị A  m ;1  2m m , B  m ;1  2m m  Tam giác OAB vuông O  OA.OB   4m3  m    m  (1,0 điểm) a) sin x   6sin x  cos x  (sin x  6sin x)  (1  cos x)  Vậy m  2 ( TM (**) ) 0.25 0.25 0,25 Gia sư Thành Được www.daythem.edu.vn  2sin x  cos x  3  2sin x   2sin x  cos x   sin x   0 25 sin x   x  k Vậy nghiệm PT x  k , k  Z  sin x  cos x  3(Vn) b) Tìm số phức z biết iz  (2  i) z  3i 1 25 Giả sử z=a+bi(a,bR) ta có i(a+bi)+(2-i)(a-bi)=3i-1 2a-2b=-1 -2b=3 => a=-2 b=-3/2 0.25 0.25 (1,0 điểm) 2 2 ln x x2 ln x ln x I   xdx  2 dx  2 dx   2 dx x x x 1 1 0.25 ln x dx x2 Tính J   Đặt u  ln x, dv  0.25 1 dx Khi du  dx, v   x x x 2 1 Do J   ln x   dx x x 1 1 1 J   ln    ln  x1 2 Vậy I   ln 2 0.25 0.25 (0,5 điểm) 5 x  52 x1  6.5x    5.52 x  6.5 x     x 5   x   Vậy nghiệm PT x  x  1  x  1 0.25 0.25 (1,0 điểm) Đường thẳng d có VTCP ud   2;1;3 Vì  P   d nên  P  nhận ud   2;1;3 làm VTPT Vậy PT mặt phẳng  P  : 2  x    1 y  1   z  3   2 x  y  3z  18  Vì B  d nên B  1  2t;1  t; 3  3t  AB  27  AB  27    2t   t   6  3t   27  7t  24t   2 0.25 0.25 0.25 Gia sư Thành Được www.daythem.edu.vn t   13 10 12    Vậy B  7; 4;6  B   ; ;   t  7  7  (1,0 điểm) Gọi K trung điểm AB  HK  AB (1) Sj Vì SH   ABC  nên SH  AB (2) Từ (1) (2) suy  AB  SK Do góc  SAB  với đáy góc 0.25 0.25 SK HK SKH  60 Ta có SH  HK tan SKH  M B H C a K A 1 a3 Vậy VS ABC  S ABC SH  AB AC.SH  3 12 Vì IH / / SB nên IH / /  SAB  Do d  I ,  SAB    d  H ,  SAB   Từ H kẻ HM  SK M  HM   SAB   d  H ,  SAB    HM Ta có 1 16 a a     HM  Vậy d  I ,  SAB    2 HM HK SH 3a 4 0.25 0.25 0,25 (1,0 điểm) Gọi AI phan giác BAC Ta có : AID  ABC  BAI A IAD  CAD  CAI E M' B K I M C D 0,25 Mà BAI  CAI , ABC  CAD nên AID  IAD  DAI cân D  DE  AI PT đường thẳng AI : x  y   Goị M’ điểm đối xứng M qua AI  PT đường thẳng MM’ : x  y   Gọi K  AI  MM '  K(0;5)  M’(4;9) VTCP đường thẳng AB AM '   3;5  VTPT đường thẳng AB n   5; 3 Vậy PT đường thẳng AB là:  x  1   y     5x  y   0,25 0,25 0,25 Gia sư Thành Được www.daythem.edu.vn   x  xy  x  y  y  y  4(1)    y  x   y   x  1(2) (1,0 điểm)  xy  x  y  y   Đk: 4 y  x    y 1   Ta có (1)  x  y  0.25  x  y  y  1  4( y  1)  Đặt u  x  y , v  y  ( u  0, v  ) u  v Khi (1) trở thành : u  3uv  4v    u  4v(vn) Với u  v ta có x  y  , thay vào (2) ta :  y  y    y  1   y  2 y2  y   y 1  y  (     y2  y   y 1  y 0.25 y 1 1   y2    y  2    y  y   y 1 y 1   y2  y   y 1   0 y     0y  ) y 1  0.25 0.25 Với y  x  Đối chiếu Đk ta nghiệm hệ PT  5;  10 n     C113  165 0.25 Số cách chọn học sinh có nam nữ C52 C61  C51.C62  135 135  Do xác suất để học sinh chọn có nam nữ 165 11 (1,0 điểm) bc bc bc bc  1    Vì a + b + c = ta có      ab ac  3a  bc a (a  b  c )  bc (a  b)(a  c ) 1   Vì theo BĐT Cô-Si: , dấu đẳng thức xảy  b = c ab ac (a  b)(a  c) Tương tự Suy P  ca ca  1      ba bc  3b  ca ab ab  1       ca cb  3c  ab bc  ca ab  bc ab  ca a  b  c     , 2(a  b) 2(c  a ) 2(b  c) 2 Đẳng thức xảy a = b = c = Vậy max P = 0.25 0,25 0,25 0,25 a = b = c = 0,25 Gia sư Thành Được www.daythem.edu.vn ... AB  27    2t   t   6  3t   27  7t  24t   2 0.25 0.25 0.25 Gia sư Thành Được www.daythem.edu.vn t   13 10 12    Vậy B  7; 4;6  B   ; ;   t  7  7  (1,0 điểm) Gọi... đại x  , yCD  , đạt cực tiểu x  1 , yCT  1 lim y   , lim y   x  x  * Bảng biến thi n x – y’ + y + -1 + – 0.25 + - -1 Đồ thị: 0.25 2 b.(1,0 điểm) y '  3x  3m  3  x ... sin x   6sin x  cos x  (sin x  6sin x)  (1  cos x)  Vậy m  2 ( TM (**) ) 0.25 0.25 0,25 Gia sư Thành Được www.daythem.edu.vn  2sin x  cos x  3  2sin x   2sin x  cos x   sin x

Ngày đăng: 27/08/2017, 18:00

TỪ KHÓA LIÊN QUAN

w