1. Trang chủ
  2. » Giáo Dục - Đào Tạo

giáo án hình học 8 TUẦN 11 TUẦN 14

19 239 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 19
Dung lượng 364,5 KB

Nội dung

Bài soạn Hình học Giáo viên: Nguyễn Phước Tài TUẦN 11 TIẾT 21 Ngày dạy: §12 HÌNH VUÔNG I/ MỤC TIÊU : - HS nắm vững định nghĩa, tính chất hình vuông, thấy hình vuông dạng đặc biệt hình chữ nhật có cạnh nhau, dạng đặc biệt hình thoi có góc Hiểu nội dung dấu hiệu (giả thiết, kết luận) - HS biết vẽ hình vuông, nhận biết tứ giác hình vuông theo dấu hiệu nhận biết nó, biết vận dụng kiến thức hình vuông toán chứng minh hình học, tính toán thực tế II/ CHUẨN BỊ : - GV : Thước thẳng, compa, êke; bảng phụ (đề kiểm tra, hình vẽ) - HS : Ôn tập hình chữ nhật, hình thoi, làm nhà; dụng cụ: thước thẳng, compa III/ TIẾN TRÌNH LÊN LỚP : Ổn định lớp: Kiểm tra cũ: (6’) Câu 1- Định nghĩa hình thoi tính chất hình thoi Câu 2- Nêu dấu hiệu nhận biết thoi Bài mới: HOẠT ĐỘNG CỦA GIÁO VIÊN HOẠT ĐỘNG CỦA GHI BẢNG HỌC SINH Hoạt động : Hình thành định nghĩa (10’) - GV vẽ hình vuông ABCD - HS quan sát hình vẽ, trả 1) Định nghĩa : lên bảng hỏi: lời: Có bốn cạnh (SGK trang 107) - Tứ giác ABCD có đặc AB = BC = CD = DA, bốn biệt? góc 900 Đây hình vuông Hãy - HS nêu định nghĩa hình cho biết hình vuông vuông? - GV chốt lại, nêu định - Nhắc lại định nghiã, vẽ nghiã ghi bảng hình ghi vào GV hỏi: Tứ giác ABCD hình vuông ⇔ - Định nghĩa hình chữ nhật HS trả lời: µ µ µ µ hình vuông giống - Giống : có bốn góc vuông A = B = C = D = 90  khác điểm nào? Khác : hình vuông có AB = BC = CD = DA - Định nghĩa hình thoi thêm đk bốn cạnh Từ định nghĩa hình vuông ta suy hình vuông giống khác ra: điểm nào? - Giống : bốn cạnh * Hình vuông hình chữ nhật có - GV chốt lại ghi bảng bốn cạnh định nghiã khác hình Khác : hvuông có thêm * Hình vuông hình thoi có bốn vuông đk có bốn góc vuông góc vuông - HS nhắc lại ghi vào ⇒ Hình vuông vừa hình chữ nhật, vừa hình thoi Hoạt động : Tìm tính chất (10’) -Như hình vuông có - HS suy nghĩ trả lời: có tất 2) Tính chất : tính chất gì? tính chất hình - Hình vuông có tất tính Bài soạn Hình học Giáo viên: Nguyễn Phước Tài chữ nhật hình thoi chất hình chữ nhật hình -Hãy kể tính chất - HS kể tính chất từ thoi hình vuông? hình chữ nhật hình thoi - Hai đường chéo hình vuông - Từ em nhận … vuông góc với tính chất đặc trưng - HS kết hợp tính chất trung điểm đường chéo hình vuông đường chéo hai hình đường Mỗi đường chéo không? chữ nhật hình thoi để suy đường phân giác góc đối - GV chốt lại, ghi bảng tình … chất hình vuông - HS nhắc lại ghi Hoạt động : Tìm dấu hiệu nhận biết hình chữ nhật (10’) 3) Dấu hiệu nhận biết : - Đưa bảng phụ giới thiệu - HS ghi nhận dấu hiệu (SGKtrang 107) dấu hiệu nhận biết nhận biết hình vuông vào Hình chữ nhật có hai cạnh kề tứ giác hình vuông Hỏi: - HS đọc (nhiều lần) hình vuông - Các câu hay dấu hiệu, suy nghĩ trả Hình chữ nhật có hai đường sai? Vì sao? lời… chéo vuông góc hình vuông Hcn có cạnh kề Hình chữ nhật có đường - GV chốt lại giải thích ⇒ bốn cạnh hcn chéo phân giác góc vài dấu hiệu làm mẫu nên hình hình vuông … Hình thoi có góc vuông vuông - Các câu khác chứng Hcn thêm 2đchéo vuông hình vuông minh tương tự Về nhà, học góc ⇒ bốn tam giác vuông Hình thoi có hai đường chéo tự ghi GT-KL cân chung đỉnh nhau hình vuông chứng minh dấu hiệu ⇒ 4cạnh hcn này Vậy hình vuông Nhận xét: Một tứ giác vừa hình chữ nhật, vừa hình thoi tứ … - Qua dấu hiệu nhận biết HS suy nghĩ trả lời… giác hình vuông ta có nhận xét gì? - HS ghi vào - Giới thiệu nhận xét - HS quan sát hình vẽ trả - Treo bảng phụ hình vẽ 105 lời trường hợp (hình - Cho HS làm ?2 a,c,d) Củng cố (6’) Bài 79 trang 108 SGK -Đọc lại đề Bài 79 trang 108 SGK -Treo bảng phụ -HS trả lời -Áp dụng định lí Phythaore a) 18 cm ; b) cm Dặn dò (2’) Bài 81 trang 108 SGK ! Dùng dấu hiệu nhận biết - Xem lại định lí phytharore Bài 81 trang 108 SGK Bài 82 trang 108 SGK ! Chứng minh tam giác - Xem lại dấu hiệu nhận Bài 82 trang 108 SGK => cạnh biết Chứng minh góc HEF = 900 - Xem lại định nghĩa, tính - Xem lại cách chứng minh chất, dấu hiệu nhận biết hai tam giác hình vuông RÚT KINH NGHIỆM Bài soạn Hình học Giáo viên: Nguyễn Phước Tài TIẾT 22 Ngày dạy: LUYỆN TẬP I/ MỤC TIÊU : - Ôn tập, củng cố lại tính chất dấu hiệu nhận biết hình bình hành, hình chữ nhật, hình thoi hình vuông (chủ yếu vẽ hình thoi, hình vuông) - Rèn luyện cách lập luận chứng minh, cách trình bày lời giải toán chứng minh, cách trình bày lời giải toán xác định hình dạng tứ giác; rèn luyện cách vẽ hình II/ CHUẨN BỊ : - GV : thước, êke, compa, bảng phụ, phấn màu - HS : Học lý thuyết hình bình hành, hình chữ nhật, hình thoi, hình vuông; làm tập nhà III/ TIẾN TRÌNH LÊN LỚP : Ổn định lớp: Kiểm tra cũ: (10’) treo bảng phụ Câu 1: Nêu dấu hiệu nhận biết hình vuông Câu 2: Cho hình 106 Tứ giác AEDF hình gì? Vì sao? Bài mới: Luyện tập (35’) HOẠT ĐỘNG CỦA GIÁO VIÊN HOẠT ĐỘNG CỦA GHI BẢNG HỌC SINH Hoạt động : Bài 84 trang 109 SGK (20’) Bài 84 trang 109 SGK Bài 84 trang 109 SGK - Cho HS đọc đề bài, vẽ hình - HS đọc đề bài, tóm tắt tóm tắt GT-KL Gt-Kl vẽ hình (một HS - Nêu hướng giải câu a? làm bảng) - Gọi HS giải bảng câu - Đứng chỗ nêu cách a giải - Theo dõi HS làm - Một HS làm bảng, - Cho lớp nhận xét hoàn lớp làm vào câu a: chỉnh bảng hình bhành - Nêu yêu cầu câu b Cho HS - Suy nghĩ trả lời: AD suy nghĩ trả lời chỗ (ta phải phân giác  Gt ∆ABC, D ∈ BC xét dấu hiệu nào?) Vậy D giao điểm tia DE//AB ; DF//AC phân giác  với BC Kl a) AEDF hình gì? Vì sao? hbh AEDF hình thoi b) Vtrí D để AEDF hthoi - Nêu yêu cầu câu c? - HS hợp tác nhóm để giải c) AEDF h`gì  = 1v GV yêu cầu HS hợp tác làm câu c : Vị trí D để AEDF hvg theo nhóm Đại diện -  = 1v hbh AEDF nhóm trình bày bảng phụ hcnhật Giải: Nhận xét, sửa sai, hoàn chỉnh - Nếu D giao điểm a) AEDF hình gì? Vì sao? giải cho HS tia phân giác góc A với BC Ta có: hcn AEDF có đường DE//AB; DF//AC (E∈AC) chéo AD pgiác hình DE//AF, DF//AE (F∈ AB) vuông Vậy: AEDF (các cạnh đối ssong) b) Vị trí D để AEDF hình thoi AD phải phân giác  Vậy: D giao điểm tia phân giác  với BC hbh AEDF Bài soạn Hình học Giáo viên: Nguyễn Phước Tài hình thoi c) AEDF h`gì A= 1v Vị trí D để AEDF hvg Ta có:  = 1v hbh AEDF hcnhật Nếu D giao điểm tia phân giác góc A với BC hcn AEDF có đường chéo AD pgiác hình vuông Hoạt động 2: Bài 85 trang 109 SGK (15’) Bài 85 trang 109 SGK Bài 85 trang 109 SGK - Cho HS đọc đề 85, vẽ - HS đọc đề bài, vẽ hình, hình tóm tắt Gt-Kl ghi Gt-Kl - Cho HS quan sát hình vẽ -HS làm việc cá nhân câu giải câu a a - Cho HS trình bày - HS trình bày bảng bảng (GV kiểm làm vài HS) GT hcn ABCD; AB = 2AD - Nêu yêu cầu câu b? cho HS - Hợp tác nhóm giải câu b AE = EB; DF = FC trả lời chỗ hình ? AF cắt DE M; CE cắt BF N - Sau cho HS hợp tác giải - HS sửa vào KL a) ADFE hình ? sao? theo nhóm, đại diện nhóm b) EMFN hình gì? Vì sao? trình bày bảng phụ Giải: - Theo dõi nhóm làm a) AE//DF AE = DF ⇒ AEFD việc, gợi ý, giúp đỡ cần hbh Hbh AEFD có  = 1v nên - Cho nhóm trình bày, hcn, lại có AD = AE = ½ AB nhận xét, sửa sai chéo … nên hình vuông - Trình bày lại giải b) Tứ giác DEBF có EB//DF, EB = DF nên hbh, DE//BF Tương tự AF//EC Suy EMFN hbhành ADFE hvuông (câu a) nên ME = MF ME ⊥ MF ¶ = 1v Hình bhành EMFN có M nên hcn, lại có ME = MF nên hvuông : Dặn dò (3’) - Về xem lại lí thuyết soạn - HS ghi vào tập câu hỏi ôn chương - Tiết sau ÔN TẬP CHƯƠNG I RÚT KINH NGHIỆM Bài soạn Hình học Giáo viên: Nguyễn Phước Tài TUẦN 12 Ngày dạy: TIẾT 23 + 24: ÔN TẬP CHƯƠNG I I/ MỤC TIÊU : - HS hệ thống lại kiến thức tứ giác học chương (định nghĩa, tính chất, dấu hiệu nhận biết) - Giúp HS thấy mối quan hệ tứ giác học, góp phần rèn luyện tư biện chứng cho HS - HS vận dụng kiến thức để giải tập có dạng tính toán, chứng minh, nhận biết hình điều kiện hình II/ CHUẨN BỊ : - GV : Thước, êke, compa, bảng phụ (vẽ sẵn hình 79 sGV) - HS : Ôn tập kiến thức chương I, trả lời câu hỏi sgk (trang 110) III/ TIẾN TRÌNH LÊN LỚP : Ổn định lớp: Kiểm tra cũ: Bài mới: (Ôn tập chương I) HOẠT ĐỘNG CỦA GIÁO VIÊN Treo bảng phụ ghi câu hỏi (SGK) Câu 1: Phát biểu định nghĩa tứ giác Câu 2: Phát biểu định nghĩa hành thang, hình thang cân Câu 3: Phát biểu tính chất hình thang cân Câu 4: Phát biểu tính chất đường trung bình tam giác, đường trung bình hình thang Câu 5: Phát biểu định nghĩa hình bình hành, hình chữ nhật, hình thoi, hình vuông Câu 6: Phát biểu tính chất hình bình hành, hình chữ nhật, hình thoi, hình vuông Câu 7: Nêu dấu hiệu nhận biết hình HOẠT ĐỘNG CỦA HỌC SINH Hoạt động : Ôn tập lí thuyết (15’) -Đọc câu hỏi lại nhiều lần -Trả lời theo yêu cầu GV GHI BẢNG Bài soạn Hình học Giáo viên: Nguyễn Phước Tài bình hành, hình chữ nhật, hình thoi, hình vuông Câu 8: Thế hai điểm đối xứng qua đường thẳng? Trục đối xứng hình thang cân đường nào? Câu 9: Thế hai điểm đối xứng qua điểm? Tâm đối xứng hình bình hành điểm nào? Hoạt động : Nhận biết tứ giác lồi tính số đo góc (10’) -Treo bảng phụ: Hình -Trả lời – nhận xét Bài tập: Tìm x hình vẽ: trang 64 SGK -Treo bảng phụ tập -Yêu cầu HS đọc đề -Đọc yêu cầu đề bài -Tìm x -Đề tìm gì? -Định lý tổng góc -Vận dụng định lý tứ giác Tổng góc để tìm x? phát biểu tứ giác 3600 lại định lý đó? -Trình bày – nhận xét -Yêu cầu HS trình bày -Lắng nghe ghi vào -Chốt lại Hoạt động 3: Bài 88 trang 111 SGK (18’) Bài 88 trang 111 SGK Bài 88 trang 111 SGK - Treo bảng phụ ghi đề - HS đọc đề - Gọi HS lên bảng vẽ - HS lên bảng vẽ hình hình - Đề cho ABCD tứ - Yêu cầu HS phân tích giác, E;F;G;H đề trung điểm AB; BC; CD; DA - Đề hỏi : điều kiện đường chéo AC BD để EFGH hình chữ nhật; hình thoi; hình vuông - HS lên bảng nêu GT-KL - Ta cần chứng minh EFGH - Yêu cầu HS nêu GT- hình bình hành KL - Muốn EFGH hình - HS lên bảng làm Ta có E trung điểm AB (gt) chữ nhật, hình thoi F trung điểm BC (gt) ta cần điều ? => EF đường trung bình - Gọi HS lên bảng tam giác ABC chứng minh: EFGH Nên : EF//AC EF= ½ AC (1) hình bình hành Tương tự : HG đường trung bình tam giác ADC Nên : HG// AC HG= ½ AC (2) Bài soạn Hình học - Cho HS khác nhận xét -Muốn hình bình hành EFGH hình chữ nhật ta cần gì? - Khi AC BD ? Giải thích ? - Vậy điều kiện để AC BD hình bình hành EFGH hình chữ nhật? - Cho HS chia nhóm làm câu b ,c Thời gian làm 3’ - Nhắc nhở HS chưa tập trung - Cho đại diện nhóm trình bày - Cho HS nhóm khác nhận xét - GV hoàn chỉnh làm Giáo viên: Nguyễn Phước Tài Từ (1) (2) => EFGH hình bình hành (có cạnh đối vừa - HS khác nhận xét song song vừa nhau) -Muốn hình bình hành EFGH a) Để EFGH hình chữ nhật hình chữ nhật ta cần HE ⊥ HE ⊥ EF EF Khi đó: AC ⊥ BD HE//BD; - Khi : AC ⊥ BD EF//AC HE//BD; EF//AC Vậy:Muốn hình bình hành EFGH -Muốn hình bình hành EFGH hình chữ nhật AC ⊥ BD hình chữ nhật AC ⊥ BD - HS suy nghĩ cá nhân sau chia nhóm 1+2 làm câu b ; b)Muốn hình bình hành EFGH nhóm 3+4 làm câu c hình thoi HE = EF Khi AC = BD EF= ½ AC, HE= ½ BD -Đại diện nhóm lên bảng c)Muốn EFGH hình vuông trình bày EFGH phải hình chữ nhật - HS nhóm khác nhận xét hình thoi AC = BD AC ⊥ BD - HS sửa vào tập Hoạt động 4: Bài 89 trang 111 SGK (40’) Bài 89 trang 111 SGK Bài 89 trang 111 SGK - Treo bảng phụ ghi đề - HS đọc đề bài - Đề cho tam giác ABC - Cho HS phân tích đề vuông A, trung tuyến AM, DB=DA, E điểm đối xứng với M qua D - Đề hỏi : a) Chứng minh điểm E đối xứng với điểm M qua AB b)Các tứ giác AEMC, AEBM hình ? Vì ? c) Cho BC = 4cm, tính chu vi tứ giác AEBM d) Tam giác vuông ABC có điều kiện AEBM hình vuông - Cho HS lên bảng vẽ - HS lên bảng vẽ hình hình a) Chứng minh điểm E đối - Cho HS lên bảng nêu - HS lên bảng nêu GT-KL xứng với điểm M qua AB GT-KL Ta có: - Muốn chứng minh E - Ta phải chứng minh AB D trung điểm EM (vì E đối đối xứng với M qua AB trung trực EM xứng với M qua D) Bài soạn Hình học ta phải chứng minh điều ? - Muốn AB trung trực EM ta cần điều ? - Cho HS lên bảng chứng minh -Các tứ giác AEMC, AEBM hình gì? Vì ? -Chu vi tứ giác AEBM gì? -Ta tính cạnh nào? -HS trình bày -Hình thoi AEBM hình vuông cần điều khện nào? Giáo viên: Nguyễn Phước Tài M trung điểm BC (gt) Do đó: DM đường trung bình -Ta cần chứng minh AB ⊥ tam giác ABC, nên: MD//AC EM D trung điểm Mà AB ⊥ AC ⇒ MD ⊥ AB EM Vậy điểm E đối xứng với điểm M - HS lên bảng chứng minh qua AB câu a) - Tứ giác AEMC hình bình b)Các tứ giác AEMC, AEBM hành EM//AC (MD//AC) hình ? Vì ? EM=AC(cùng 2DM) -Tứ giác AEMC hình bình - Tứ giác AEBM hình thoi hành EM//AC (MD//AC) EM BA hai đường EM = AC (cùng 2DM) chéo cắt trung điểm -Tứ giác AEBM hình thoi đường nên AEBM EM BA hai đường chéo cắt hình bình hành EM ⊥ AB trung điểm -Một cạnh nhân đường nên AEBM hình bình hành EM ⊥ AB -Cạnh BM cm c) Cho BC = 4cm, tính chu vi tứ cạnh BC giác AEBM -HS làm câu c) Do BC = 4cm ⇒ BM = ½.4=2cm Chu vi tứ giác AEBM là: BM = 4.2 = cm d) Tam giác vuông ABC có điều - Hình thoi AEBM hình kiện AEBM hình vuông vuông cần góc vuông Để AEBM hình vuông AB hai đường chéo = EM EM = AC (AEMC hbh) nên AB = AC -AB = AC Vậy Khi tam giác ABC vuông cân tứ giác AEBM hình -ABC tam giác vuông cân vuồng -Để AB = EM AB AC nào? -Vậy ABC tam giác gì? - Cho HS khác nhận xét - GV hoàn chỉnh - HS khác nhận xét làm - HS sửa vào tập Hoạt động 5: Đối xứng trục đối xứng tâm (5’) Bài 50 trang 95 SGK -Treo bảng phụ vẽ hình 81 trang 95 -Yêu cầu HS xác định HS vẽ điểm đối xứng : Dặn dò (2’) - Về xem lại lí thuyết - HS nhà xem lại lí thuyết tập giải tập giải để tiết sau làm kiểm tra tiết RÚT KINH NGHIỆM Bài soạn Hình học Giáo viên: Nguyễn Phước Tài TUẦN 13 TIẾT 24 Ngày kiểm tra: KIỂM TRA 45 PHÚT I MA TRẬN ĐỀ KIỂM TRA CHƯƠNG I – HÌNH HỌC 8: Cấp độ Vận dụng Nhận biết Tên chủ đề Tứ giác lồi (1 tiết) Số câu: Số điểm Tỉ lệ % Hình thang hình thang cân Hình bình hành Hình chữ nhật Hình thoi Hình vuông (15 tiết) Số câu: Số điểm Tỉ lệ% Đối xứng trục đối xứng tâm Trục đối xứng, tâm đối xứng hình (6 tiết) Số câu: Số điểm Tỉ lệ % Tổng số câu: Tổng số điểm: Tỉ lệ: Thông hiểu Hiểu định nghĩa tứ giác lồi 0,25 Cấp độ thấp Cấp độ cao Vận dụng định lý tứ giác tổng góc tứ giác 0,25 -Vận dụng định nghĩa, tính chất, dấu hiệu nhận biết (đối với loại hình nầy) để giải toán chứng minh -Vận dụng định lý đường trung bình tam giác đường trung bình hình thang, tính chất điểm cách đường thẳng cho trước 6,0 1,0 Biết được: -Các khái niệm “đối xứng trục” “đối xứng tâm” -Trục đối xứng hình hình có trục đối xứng Tâm đối xứng hình hình có tâm đối xứng 1,5 1,0 2 1,5 1,25 6,25 15% 12,5% 62,5% II ĐỀ KIỂM TRA CHƯƠNG I – HÌNH HỌC 8: Bài 1: (3,0 điểm) a) Trong hai hình hình Hình tứ giác lồi b) Tìm x hình c) Mỗi hình sau có trục đối xứng: 1,0 10% Cộng 0,5 điểm = % 7,0 điểm = 70 % 2,5 điểm = 25% 12 10,0 100% Bài soạn Hình học Giáo viên: Nguyễn Phước Tài -Chữ in hoa A (hình 4a) -Tam giác (hình 4b) -Đường tròn tâm O (hình 4c) a) d) Vẽ điểm A’ đối xứng với điểm A qua B, vẽ điểm C’ đối xứng với điểm C qua B (hình 5) Bài 2: (3,0 điểm) Cho tứ giác ABCD Gọi M,N,P,Q lần lược trung điểm AB, BC, CD, DA Chứng minh rằng: Tứ giác MNPQ hình bình hành Bài 3: (4,0 điểm) Cho tam giác vuông ABC vuông A, điểm D trung điểm BC Gọi M điểm đối xứng với D qua AB, E giao điểm DM AB Kẽ DF vuông góc với AC (F∈AC) a) Tứ giác AEBF hình gì? Vì sao? b) Chứng minh tứ giác ADBM hình thoi c) Tam giác vuông ABC có điều kiện tứ giác AEDF hình vuông Bài soạn Hình học Giáo viên: Nguyễn Phước Tài HƯỚNG DẪN CHẤM KIỂM TRA 45 PHÚT CHƯƠNG I – HÌNH HỌC TÓM TẮC GIẢI BÀI CÂU a Hình b x = 1260 Hình 4a) có trục đối xứng c Hình 4b) có trục đối xứng HÌnh 4c) có vô số trục đối xứng ĐIỂM 0,25 0,25 0,5 0,5 0,5 0,5 d 0,5 0,5 Chứng minh: Nối đường chéo AC tứ giác ABCD 0,5 Ta có: MA = MB, NB = NC (gt) Suy ra: MN đường trung bình tam giác ABC, nên: 0,5 MN // AC MN = AC (1) Tương tự, QA = QD, PC = PD (gt) Do đó: PQ đường trung bình tam giác ADC, nên: 0,5 PQ // AC PQ = AC (2) 0,5 Từ (1) (2) ta được: MN//PQ MN = PQ Vậy, tứ giác ABCD hình bình hành (cặp cạnh đối song song 0,5 nhau) Bài soạn Hình học Giáo viên: Nguyễn Phước Tài 0,5 a b c Tứ giác AEBF hình gì? Vì sao? µ =E µ = F$ = 900 nên hình chữ nhật Tứ giác AEBF có: A Chứng minh tứ giác ADBM hình thoi ∆ABC có BD = DC, DE // AC (DE//AF) nên AE = BE Ta lại có: DE = ME (do M đối xứng với D qua AB) Suy ra: Tứ giác ADBM hình bình hành (hai đường chéo cắt trung điểm đường) Mà: AB ⊥ DM (gt) Vậy: Tứ giác ADBM hình thoi Tam giác vuông ABC có điều kiện tứ giác AEDF hình vuông Hình chữ nhật AEDF hình vuông ⇔ AE = AF 1 Ta lại có: AE = AC, AF = AB 2 Nên: AE = AF ⇔ AC = AB Vậy ∆ABC tam giác cân A AEDF hình vuông 1,0 0,5 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 Bài soạn Hình học TIẾT 26 Giáo viên: Nguyễn Phước Tài Ngày dạy: Chương II : ĐA GIÁC DIỆN TÍCH ĐA GIÁC §1 ĐA GIÁC – ĐA GIÁC ĐỀU I/ MỤC TIÊU : - HS nắm khái niệm đa giác lồi, đa giác - HS biết cách tính tổng số đo góc đa giác - Vẽ nhận biết số đa giác lồi, số đa giác - Biết vẽ trục đối xứng tâm đối xứng (nếu có) đa giác - HS biết sử dụng phép tương tự để xây dựng khái niệm đa giác lồi, đa giác từ khái niệm tương ứng biết tứ giác - Qua vẽ hình quan sát hình vẽ, HS biết cách qui nạp để xây dựng công thức tính tổng số đo góc đa giác - Kiên trì suy luận; cẩn thận; xác vẽ hình II/ CHUẨN BỊ : - GV : Thước thẳng có chia khoảng, compa, thước đo góc,bảng phụ - HS : Ôn định nghiã tứ giác, tứ giác lồi xem trước chương II III/ TIẾN TRÌNH LÊN LỚP : Ổn định lớp: Kiểm tra cũ: (không) Bài mới: HOẠT ĐỘNG CỦA GIÁO VIÊN HOẠT ĐỘNG CỦA NỘI DUNG HỌC SINH Hoạt động : Giới thiệu chương, (5’) Chương II : ĐA GIÁC – - GV giới thiệu chương II, - HS nghe giới thiệu ghi DIỆN TÍCH ĐA GIÁC học §1 ghi bảng tựa §1 ĐA GIÁC ĐA GIÁC ĐỀU Hoạt động : Khái niệm đa giác (13’) - Treo bảng phụ vẽ hình 112 - Quan sát hình vẽ bảng 1) Khái niệm đa giác : –117 phụ Định nghĩa: (sgk) - Giới thiệu t/c đoạn - Nghe GV giới thiệu B thẳng, yếu tố đỉnh, A cạnh đa giác H114, C H117 - Gọi HS nhắc lại định nghĩa - Nhắc lại định nghĩa tứ E D tứ giác, tứ giác lồi giác, tứ giác lồi… Đa giác ABCDE - Nêu ?1 cho HS thực - Xem hình 118 trả lời ? Các đỉnh: A,B,C,D,E 1: đoạn thẳng AE, ED có Các cạnh: AB, BC, CD, DE, điểm chung lại nằm EA đường thẳng Các đường chéo: AC, AD, - Hỏi: Hình bảng - Hình 115,116,117 đa BD, BE, CE Bài soạn Hình học đa giác lồi? - Thế đa giác lồi? Nêu ?2 , gọi HS trả lời - Treo hình vẽ 119 sgk cho HS thực ?3 - Nói thêm: đa giác có n đỉnh (n≥ 3) gọi hình ngiác hay n-cạnh, với n = 3, 4,…, 9, 10 gọi gì? Giáo viên: Nguyễn Phước Tài giác lồi Các góc: Aˆ , Bˆ , Cˆ , Dˆ , Eˆ - Nêu định nghĩa SGK(p.114) Đáp: vẽ đường thẳng qua cạnh đa giác đa giác nằm nửa mặt phẳng - Nhìn hình 119, trả lời ?3 HS gọi tên đỉnh, cạnh, đường chéo, góc… đa giác - Trả lời: h`tam giác, h`tứ giác, … , hình cạnh, hình 10 cạnh… Hoạt động : Đa giác (10’) Quan sát hình vẽ 2) Đa giác : - Phát biểu định nghĩa đa Định nghiã: Đa giác đa giác giác có tất cạnh tất góc - HS lặp lại cho xác ghi - Treo bảng phụ vẽ hình 120 - Giới thiệu: ví dụ đa giác - Hỏi: Thế đa giác đều? GV nhắc lại định nghĩa ghi bảng - Nêu ?4 cho HS thực - Mỗi đa giác hình - Thực ?4 – Trả lời: 120 có trục đối xứng ? + ∆đều có trục đxứng Có tâm đối xứng? + H`vuông có trục đối xứng,1 tâm đxứng giao - GV chốt lại vẽ vào hình điểm đường chéo cho HS thấy rõ + Ngũ giác có trục đối xứng + Lục giác có trục đối xứng tâm đối xứng Củng cố (15’) Bài trang 115 SGK Bài trang 115 SGK - Cho HS đọc đề - HS đọc đề Hãy vẽ phátc hoạ lục giác - Cho HS lên bảng làm - HS lên bảng vẽ phác hoạ lồi Hãy nêu cách nhận biết đa giác lồi B A C E - Cho HS khác nhận xét - GV hoàn chỉnh làm Bài trang 115 SGK - Cho HS đọc đề - Cho HS lên bảng làm D - Cho HS khác nhận xét - HS sửa vào tập - HS đọc đề - HS suy nghĩ trả lời : a) Hình thoi có cạnh góc không nhau) b) Hình chữ nhật có góc cạnh Bài trang 115 SGK Cho ví dụ đa giác không trường hợp sau a) Có tất cạnh b) Có tất góc Bài soạn Hình học Giáo viên: Nguyễn Phước Tài - Cho HS khác nhận xét Bài trang 115 SGK - Treo bảng phụ vẽ sẵn - Gọi HS lên bảng làm - Cho HS khác nhận xét - Nhận xét cho điểm (nếu được) Dặn dò (2’) Bài trang 115 SGK ! Dựa vào tam giác tính chất góc tam giác Bài trang 115 SGK ! Dựa vào công thức tính tổng số đo góc n giác - Về học định nghĩa đa giác lồi đa giác - Tiết sau học §2 DIỆN TÍCH HÌNH CHỮ NHẬT không - HS khác nhận xét - HS quan sát hình - HS làm bảng - HS khác nhận xét - HS sửa vào tập Bài trang 115 SGK Bài trang 115 SGK - HS xem lại tam giác vàtính chất góc tam giác Bài trang 115 SGK - HS xem lại - HS ý nghe ghi vào tập Bài tập (sgk) Đa giác n cạnh Số cạnh Số đường chéo xuất phát từ đỉnh Số tam giác tạo thành Tổng số đo góc đa giác n n–3 2.180 = 3600 3.180 = 5400 4.180 = 7200 n– (n – 2).1800 0 RÚT KINH NGHIỆM Bài soạn Hình học Giáo viên: Nguyễn Phước Tài TUẦN 14 TIẾT 27 Ngày dạy: §2 DIỆN TÍCH HÌNH CHỮ NHẬT I/ MỤC TIÊU : - HS nắm công thức tính diện tích hình chữ nhật hình vuông, tam giác vuông - Hiểu “ Để chứng minh công thức cần vận dụng tính chất diện tích đa giác” II/ CHUẨN BỊ : - GV : Thước, êke, bảng phụ - HS : Thước thẳng có chia khoảng xác đến mm; máy tính bỏ túi III/ TIẾN TRÌNH LÊN LỚP : Ổn định lớp: Kiểm tra cũ: (7’) Câu 1) Viết công thức tính tổng số đo góc hình n giác) Câu 2) Tính số đo góc hình lục giác , ngũ giác Bài mới: HOẠT ĐỘNG CỦA HOẠT ĐỘNG CỦA NỘI DUNG GIÁO VIÊN HỌC SINH Hoạt động1 : Khái niệm diện tích đa giác (10’) - Giới thiệu khái niệm - HS ý nghe 1/ Khái niệm diện tích đa SGK - Quan sát hình vẽ 121, HS suy giác : - Treo hình vẽ 121 nghĩ cá nhân sau thảo luận - Số đo phần mặt phẳng - Yêu cầu HS làm ?1 nhóm trả lời ?1 giới hạn đa giác gọi - Dtích A = Dtích B diện tích đa giác - Dtích D có đơn vị, C - Mỗi đa giác có diện có tích xác định, diện tích đa - Dtích E lớn dtích C giác số dương - Thế diện tích đa - HS phát biểu SGK trang 117 - Tính chất diện tích đa giác ? giác : SGK trang 116 - Quan hệ diện tích - HS đọc tính chất diên Kí hiệu : S đa giác với số tích đa giác thực - Giới thiệu tính chất , Kí hiệu Hoạt động 2: Công thức tính diện tích hình chữ nhật (7’) - Tính diện tích hcn có - S = = 15 2/ Công thức tính diện tích chiều dài 5cm , chiều rộng hình chữ nhật : cm - S = a.b a - Nếu chiều dài a chiều b rộng b S = ? - HS phát biểu SGK trang 117 - Phát biểu định lí tính diện Diện tích hcn tích hai tích hình chữ nhật kích thước Bài soạn Hình học Giáo viên: Nguyễn Phước Tài S = a b Hoạt động : Công thức tính diện tích hình vuông,tam giác vuông (14’) - Yêu cầu HS làm ?2 - Diện tích hình vuông : S = a2 3/ Công thức tính diện tích -Diện tích tam giác vuông S = hình vuông,tam giác vuông - Cho HS khác nhận xét ½ a.b a) Diện tích hình vuông - Tính chất đa giác - HS khác nhận xét bình phương cạnh vận dụng - Vì hình chữ nhật chia S = a2 để chứng minh diện thành hai tam giác vuông nên b) Diện tích tam giác vuông tích tam giác vuông ? tam giác vuông có diện tích nửa tích hai cạnh góc nửa diện tích hcn vuông S = ½ a.b Củng cố (5’) Bài trang 118 SGK Bài trang 118 SGK - Treo bảng phụ ghi - HS đọc đề Diện tích hcn thay đổi - Cho HS lên bảng làm - HS lên bảng làm : a) S2 = (2a) b = (a.b) = 2S1 a) Chiều dài tăng lần , Vậy diện tích tăng hai lần chiều rộng không đổi b) S2 = (3a) (3b) = (a.b) = S1 b) Chiểu dài chiều rộng Vậy diện tích tăng chín lần tăng lần c) S2 = a.4).(b:4) = ab = S1 c) Chiều dài tăng lần , Vậy diện tích không đổi chiều rộng giảm lần - Cho HS khác nhận xét - HS khác nhận xét - GV hoàn chỉnh làm - HS sửa vào tập Dặn dò (2’) Bài trang 118 SGK ! Tính dtích gian phòng Tính tổng dtích cửa sổ cửa vào Lập tỉ lệ S1/S2/S rồ so sánh Bài trang 118 SGK ! Đo hia cạnh góc vuông áp dụng công thức - Học thuộc công thức Xem lại giải để tiết sau : LUYỆN TẬP §2 RÚT KINH NGHIỆM Bài soạn Hình học Giáo viên: Nguyễn Phước Tài TIẾT 28: Ngày dạy: LUYỆN TẬP I/ MỤC TIÊU : - HS củng cố tính chất diện tích đa giác, công thức tính diện tích hình chữ nhật, hình vuông, tam giác vuông - Có kỹ vận dụng công thức vào tập ; rèn luyện kỹ tính toán tìm diện tích hình học - Tiếp tục rèn luyện cho HS thao tác tư : phân tích, tổng hợp; tư logic II/ CHUẨN BỊ : - GV : Thước, êke, bảng phụ (đề kiểm tra, hình 123) - HS : Nắm vững công thức tính diện tích học; làm tập nhà III/ TIẾN TRÌNH LÊN LỚP : Ổn định lớp: Kiểm tra cũ: (8’) Câu Phát biểu viết công thức tính diện tích hình chữ nhật, hình vuông, tam giác vuông Câu Một mảnh đất hình chữ nhật dài 700m, rộng 400m tính diện tích mảnh đất theo đơn vị m2, km2, a, Bài mới: HOẠT ĐỘNG CỦA GIÁO VIÊN Bài trang 119 SGK - Nêu tập – treo hình 123 Hỏi: Đề cho biết gì? Cần tìm ? Tìm ? Gợi ý: ∆ABC tam giác gì? - Tính SABC? Tính SABCD? Từ theo đề ta tìm x? - Gọi HS tính phần, HS khác nhận xét HOẠT ĐỘNG CỦA GHI BẢNG HỌC SINH Hoạt động : Luyện tập (35’) Bài trang 119 SGK - Đọc đề tập – Xem hình ABCD hình vuông cạnh 12cm , vẽ AE = xcm Tính x cho diện - Trả lời câu hỏi GV tích tam giác ABE 1/3 diện Làm vào vở: tích hình vuông ABCD ∆ABC vuông A A x E B → SABC = ½ x.12 = 6x (cm ) 12 SABCD = AB2 = 122 = 144 (cm2) Theo đề SABC = 13 SABCD ⇔ 6x =1/3.144 ⇒ x = 8(cm) - HS khác nhận xét - Cho HS khác nhận xét - HS sửa vào tập - GV ghi bảng tóm tắt D C 144 = 6.3 - HS suy nghĩ cá nhân sau Bài 11 trang 119 SGK Bài 11 trang 119 SGK làm việc theo nhóm (2 bàn Cắt hai tam giác vuông từ bìa Hãy ghép hai tam giác - GV phát cho nhóm) luyện tập ghép hình Bài soạn Hình học nhóm tam giác vuông nhau, yêu cầu: - Có nhiều hình khác tốt - Cho nhóm trính bày góp ý - GV nhận xét, cho lớp xem hình GV chuẩn bị trước Giáo viên: Nguyễn Phước Tài - Sau nhóm trình bày cách ghép hình nhóm - Các nhóm khác góp ý tạo thành : a) Một tam giác cân b) Một hình chữ nhật c) Một hình bình hành Diện tích hình có - HS nghe, xem hình để rút không ? Vì ? kinh nghiệm a) b) c) Bài 13 trang 119 SGK - Nêu tập 13 SGK, vẽ hình 125 lên bảng - Hỏi: Dùng tính chất diện tích đa giác em ghép hình chữ nhật EFBC EGHD với ∆ có diện tích tạo hình để so sánh diện tích? (Đường chéo AC tạo ∆ có diện tích?) - GV hoàn chỉnh làm Bài 13 trang 119 SGK - Đọc đề bài,vẽ hình vào vở,ghi Cho hình 125, ABCD GT– KL hình chữ nhật , E điểm nằm đường chéo AC, - Quan sát hình vẽ, suy nghĩ FG//AD HK//AB Chứng minh cách giải hai hình chữ nhật EFBK ∆ABC = ∆CDA (c,c,c) ⇒ SABC EGDH có diện tích = SADC Tương tự ta có: SAFE = SAHE ; SEKC = SEGC Suy ra: SABC – SAFE – SEKC = SADC – SAHE – SEGC Hay SEFBK = SEGDH - HS sửa vào tập Hoạt động : Dặn dò (2’) Bài 10 trang 119 SGK Bài 10 trang 119 SGK ! Dựng hai hình vuông - HS xem lại định lí Phythaore hai cạnh góc vuông hình vuông cạnh huyền Bài 12 trang 119 SGK - HS ghép hình thành hình chữ Bài 12 trang 119 SGK ! Áp dụng công thức nhật tính diện tích kết hợp - HS ghi vào tập ghép hình RÚT KINH NGHIỆM ... -Chốt lại Hoạt động 3: Bài 88 trang 111 SGK ( 18 ) Bài 88 trang 111 SGK Bài 88 trang 111 SGK - Treo bảng phụ ghi đề - HS đọc đề - Gọi HS lên bảng vẽ - HS lên bảng vẽ hình hình - Đề cho ABCD tứ -... EFGH hình vuông trình bày EFGH phải hình chữ nhật - HS nhóm khác nhận xét hình thoi AC = BD AC ⊥ BD - HS sửa vào tập Hoạt động 4: Bài 89 trang 111 SGK (40’) Bài 89 trang 111 SGK Bài 89 trang 111 ...Bài soạn Hình học Giáo viên: Nguyễn Phước Tài chữ nhật hình thoi chất hình chữ nhật hình -Hãy kể tính chất - HS kể tính chất từ thoi hình vuông? hình chữ nhật hình thoi - Hai đường chéo hình vuông

Ngày đăng: 25/08/2017, 10:09

TỪ KHÓA LIÊN QUAN

w