Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 80 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
80
Dung lượng
366,65 KB
Nội dung
ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC GIÁO DỤC CHU ĐỨC MINH DẠYHỌCNỘISUYĐATHỨCTRONGLỚPCÁCĐATHỨCVỚIHỆSỐNGUYÊNCHOHỌCSINHKHÁ,GIỎI TRUNG HỌC PHỔ THÔNG LUẬN VĂN THẠC SỸ SƯ PHẠM TOÁN HÀ NỘI - NĂM 2016 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC GIÁO DỤC CHU ĐỨC MINH DẠYHỌCNỘISUYĐATHỨCTRONGLỚPCÁCĐATHỨCVỚIHỆSỐNGUYÊNCHOHỌCSINHKHÁ,GIỎI TRUNG HỌC PHỔ THÔNG LUẬN VĂN THẠC SỸ TOÁN HỌC CHUYÊN NGÀNH: LÝ LUẬN VÀ PHƯƠNG PHÁP DẠYHỌC (BỘ MÔN TOÁN) Mã số: 60.14.01.11 Người hướng dẫn khoa học GS TSKH NGUYỄN VĂN MẬU HÀ NỘI - NĂM 2016 LỜI CẢM ƠN Tôi xin bày tỏ lòng biết ơn sâu sắc tới GS.TSKH Nguyễn Văn Mậu người trực tiếp hướng dẫn tận tình bảo trình nghiên cứu thực đề tài Tôi xin chân thành cảm ơn Khoa sau đại học − Đại học giáo dục, Đại học Quốc gia Hà Nội thầy giáo, cô giáo tham gia giảng dạy Khoa giúp đỡ suốt trình học tập, nghiên cứu Tôi xin chân thành cảm ơn Ban Giám Hiệu, thầy cô tổ Toán − Tin trường THPT Việt Đức tạo điều kiện giúp đỡ trình giảng dạythực nghiệm trường Mặc dù có nhiều cố gắng, xong luận văn chắn tránh khỏi thiếu sót, hạn chế Tôi mong nhận đóng góp quý báu thầy cô,và bạn đọc để luận văn hoàn thiện Hà nội, Tháng 10 năm 2016 Chu Đức Minh i Danh sách bảng 1.1 1.2 1.3 Tần suất dạynộisuyđathức Cách họcnộisuyđathứchọcsinh Mức độ quan tâm họcsinhnộisuyđathức 14 17 17 4.1 4.2 4.3 Cách họcnộisuyđathứchọcsinh Mức độ quan tâm họcsinhnộisuyđathức Điểm kiểm tra sau thực nghiệm 72 72 73 ii Danh mục ký hiệu, chữ viết tắt GV Giáo viên HS HọcsinhTHPT trung học phổ thông GTLN giá trị lớn GTNN giá trị nhỏ iii Mục lục LỜI CẢM ƠN i Danh mục ký hiệu, chữ viết tắt ii MỞ ĐẦU Cơ sở lý luận thực tiễn 1.1 Đặc điểm công tác bồi dưỡng họcsinhkhá,giỏi trường trung học phổ thông 1.1.1 Họcsinhgiỏi bồi dưỡng họcsinhgiỏi 1.1.2 Khó khăn công tác bồi dưỡng họcsinhgiỏi trường THPT không chuyên 1.2 Nộisuylớpđathứcvớihệsốnguyên bậc trung học phổ thông 1.3 Thực trạng việc dạyhọcnộisuylớpđathứcvớihệsốnguyênsố trường trung học phổ thông Một số vấn đề liên quan đến đathứcvớihệsốnguyên toán nộisuy 2.1 Một số tính chất đathứcvớihệsốnguyên 2.1.1 Nghiệm nguyên nghiệm hữu tỷ đathứcvớihệsốnguyên 2.1.2 Phân tích đathức thành nhân tử 2.2 Một số toán nộisuy 2.2.1 Nộisuy Lagrange 2.2.2 Nộisuy Abel − Newton 2.2.3 Nộisuy Taylor iv 9 10 11 12 20 20 20 21 22 22 27 29 Một số ứng dụng nộisuylớpđathứcvớihệnguyên 3.1 Một số dạng bất đẳng thức cực trị tập sốnguyên 3.1.1 Các bất đẳng thứcvới ràng buộc tổng không đổi 3.1.2 Các bất đẳng thứcvới ràng buộc tích không đổi 3.1.3 Các bất đẳng thức khác 3.1.4 Một số bất đẳng thức cực trị liên quan 3.2 Một số dạng toán liên quan 3.2.1 Phân thức nhận giá trị hữu tỷ 3.2.2 Nộisuy đồng dư thứcThực nghiệm sư phạm 4.1 Mục đích, tổ chức nội dung thực nghiệm sư phạm 4.1.1 Mục đích thực nghiệm sư phạm 4.1.2 Nhiệm vụ thực nghiệm sư phạm 4.1.3 Tổ chức thực nghiệm sư phạm 4.1.4 Nội dung thực nghiệm 4.2 Đánh giá kết thực nghiệm 4.2.1 Phương pháp đánh giá kết thực nghiệm 4.2.2 Đánh giá kết thực nghiệm số 31 31 31 45 46 50 52 52 59 68 68 68 68 68 69 70 70 71 Kết luận khuyến nghị 76 Tài liệu tham khảo 77 v Mở đầu Lý chọn đề tài Nghị số 29-NQ/TW ngày tháng 11 năm 2013, Hội nghị lần thứ Ban Chấp hành Trung ương Đảng khoá XI đổi bản, toàn diện giáo dục đào tạo nêu rõ: " Đối với giáo dục phổ thông, tập trung phát triển trí tuệ, thể chất, hình thành phẩm chất lực công dân, phát huy bồi dưỡng khiếu, định hướng nghề nghiệp chohọcsinh Phát triển khả sáng tạo, tự học, khuyến khích học tập suốt đời" Toán học môn học ưu tiên trọng phát triển hàng đầu giáo dục Bởi ứng dụng thiết thực sống hay mang vai trò công cụ thiếu cho nhiều môn học khác Toán học môn học giúp rèn khả tư chohọcsinhVới khối lượng lớn kiến thức tính logic, chặt chẽ nội dung mà trình học tập môn Toán, họcsinh phải không ngừng lỗ lực tìm tòi, vận dụng liên kết nội dung kiến thức, từ giúp cho tư em trở nên nhanh nhạy, kích thích sáng tạo Tuy nhiên họcsinhthực yêu thích học tốt môn học này, nhiệm vụ người giáo viên môn Toán quan trọng Ngoài việc giảng dạy, định hướng cho em tiếp cận nội dung kiến thức việc cung cấp cho em hệ thống đầy đủ sở lý thuyết, đưa số hướng ứng dụng để em tìm tòi phát triển cần thiết Bởi có hệ thống lý thuyết đầy đủ, số hướng ứng dụng em tự củng cố khắc sâu kiến thức, có tảng tốt để tiếp cận đến vấn đề phức tạp hơn, từ hướng ứng dụng ban đầu, em hứng thú hơn, có động lực để tìm tòi, phát triển sâu sắc ứng dụng tìm ứng dụng mới, từ tăng cường khả tư kích thích sáng tạo Các toán nộisuy vấn đề liên quan đến phần quan trọng đại số giải tích toán họcCáchọcsinh thường phải đối mặt với nhiều dạng toán loại khó liên quan đến chuyên đề Các toán nộisuy có vị trí đặc biệt toán học không đối tượng để nghiên cứu mà đóng vai trò công cụ đắc lực mô hình liên tục mô hình rời rạc giải tích lý thuyết phương trình, lý thuyết xấp xỉ, lý thuyết biểu diễn Trong hầu hết kỳ thi họcsinhgiỏi quốc gia, Olympic toán khu vực quốc tế, toán liên quan đến nộisuy (thường dừng lại nộisuy Lagrange khai triển Taylor) hay đề cập thuộc loại khó khó Các toán khai triển, đồng thức, ước lượng tính giá trị cực trị tổng, tích toán xác định giới hạn biểu thứccho trước thường có mối quan hệ nhiều đến toán nộisuy tương ứng Các toán nộisuy đặc biệt tập ứng dụng công thứcnộisuy thường đề cập giáo trình sách tham khảo đại số giải tích toán họcCác toán nộisuy chuyên đề chọn lọc cần thiết cho giáo viên họcsinhkhá,giỏi bậc trung học phổ thông Vì định chọn đề tài “dạy họcnộisuyđathứclớpđathứcvớihệsốnguyênchohọcsinhkhá,giỏi trung học phổ thông” làm đề tài luận văn Mục tiêu nghiên cứu - Tìm hiểu khó khăn dạyhọcnội dung chủ đề nộisuyđathứclớpđathứcvớihệsốnguyên - Tìm hiểu vấn đề liên quan đến nộisuyđathứclớpđathứcvớihệsốnguyênsố ứng dụng - Đề xuất biện pháp cần thiết nhằm giúp họcsinh giải lớp toán liên quan đến nộisuyđathứclớpđathứcvớihệsốnguyên Nhiệm vụ nghiên cứu - Đưa khó khăn dạyhọcnộisuyđathứclớpđathứcvớihệsốnguyên bậc trung học phổ thông - Đưa vấn đề nộisuyđathứclớpđathứcvớihệsốnguyên - Đưa số ứng dụng nộisuyđathứclớpđathứcvớihệsốnguyêndạyhọc bậc trung học phổ thông Khách thể đối tượng nghiên cứu - Khách thể nghiên cứu: Giáo viên họcsinh trung học phổ thông - Đối tượng nghiên cứu: Nộisuylớpđathứcvớihệsốnguyên Phạm vi nghiên cứu Nộisuylớpđathứcvớihệsốnguyên bậc trung học phổ thông Phương pháp nghiên cứu - Phương pháp nghiên cứu lý luận: Đọc tài liệu liên quan tới nộisuylớpđathứcvớihệsố nguyên, từ xây dựng chuyên đề học tập chủ đề - Phương pháp nghiên cứu thực tiễn: Sử dụng phương pháp điều tra câu hỏi trắc nghiệm kết hợp với vấn Giả thuyết khoa học Nếu hệ thống đầy đủ sở lý thuyết ứng dụng toán nộisuyđathứclớpđathứcvớihệsố nguyên, họcsinh dễ dàng tiếp cận hơn, có hứng thú chủ đề Đóng góp đề tài Bài toán nộisuy đề tài quan tâm công tác giảng dạy bồi dưỡng họcsinhgiỏi Tuy nhiên hầu hết đề tài đề nghiên cứu toán nộisuy mà chưa có đề tài nghiên cứu "bài toán nộisuylớpđathứcvớihệsố nguyên" việc dạyhọc chủ đề bậc trung học phổ thông Vì đề tài "dạy họcnộisuylớpđathứcvớihệsốnguyênchohọcsinhgiỏi THPT", tiến hành nghiên cứu đưa kết sau: - Việc dạyhọc chủ đề nộisuylớpđathứcvớihệsốnguyên - Cơ sở lý thuyết số ứng dụng "nội suylớpđathứcvớihệsố nguyên" Cấu trúc luận văn Cấu trúc luận văn gồm ba phần: phần mở đầu, phần nội dung phần kết luận Nội dung luận văn gồm bốn chương: - Chương 1: Cơ sở lý luận thực tiễn - Chương 2: Một số vấn đề liên quan đến đathứcvớihệsốnguyên toán nộisuy Bài toán 3.44 Cho p sốnguyên tố, ≤ r1 < r2 < · · · < rm ≤ p − 1, ri ∈ Z thỏa mãn rim ≡ (mod p), ∀i = 1, n Chứng minh rằng: xm − ≡ (x − r1 )(x − r2 ) · · · (x − rm ) (mod p) Lời giải Theo công thứcnộisuy Abel-Newton, ta có: f (x) = xm − a0 + a1 (x − r1 ) + a2 (x − r2 ) + · · · + am (x − r1 )(x − r2 ) (x − rm ) Do f (x) ∈ Z[x] r1 , r2 , , rm ∈ Z nên ∈ Z với i = 1, 2, , n So sánh hệsố cao nhất, suy am = Ta có: f (r1 ) ≡ (mod p) ⇒ a0 ≡ f (r2 ) ≡ (mod p) ⇒ a0 + a1 (r2 − r1 ) ≡ (mod p) ⇒ a1 (r2 − r1 ) ≡ ⇒ a1 ≡ (mod p) (mod p) (mod p) (do < r2 − r1 < p p nguyên tố) ········· f (rm ) ≡ (mod p) ⇒ ⇒ am ≡ (mod p) Dưới đây, ta xét kết sốhọc có ứng dụng khai triển Taylor Đây kết chìa khóa cho nhiều toán khác Trước hết, ta nhắc lại định nghĩa nghiệm phương trình đồng dư Định nghĩa 3.1 Cho f (x) ∈ Z[x] m ≥ sốnguyên dương Ta nói phương trình đồng dư f (x) ≡ (mod m) có nghiệm x0 ∈ Z f (x0 ) ≡ (mod m) Khi đó, với t ∈ Z tùy ý f (x0 + mt) ≡ (mod m) Bài toán 3.45 Giả sử f (x) ∈ Z[x] p sốnguyên tố Khi đó, phương trình đồng dư f (x) ≡ (mod p) có r nghiệm nguyên phân biệt (1) (1) x1 , x2 , , x(1) r ∈ [1; p] 63 thỏa mãn điều kiện (1) f (xi ) ≡ (mod p), ≤ i ≤ r, phương trình đồng dư f (x) ≡ (mod pk ) có r nghiệm nguyên phân biệt (k) (k) k x1 , x2 , , x(k) r ∈ [1; p ] thỏa mãn (k) f (xi ) ≡ (mod p), ≤ i ≤ r Lời giải Ta chứng minh phương pháp quy nạp theo k Với k = 1, khẳng định Giả sử khẳng định với k ≥ 1, nghĩa phương trình đồng dư f (x) ≡ (mod pk ) có r nghiệm nguyên phân biệt (k) (k) k x1 , x2 , , x(k) r ∈ [1; p ] (k) đồng thời f (xi ) ≡ (mod p), ∀1 ≤ i ≤ r Giả sử x0 ∈ Z, x0 ∈ [1; pk+1 ] nghiệm phương trình đồng dư f (x) ≡ (mod pk+1 ) Khi đó, f (x0 ) ≡ (mod pk+1 ) Suy f (x0 ) ≡ (mod pk ) tồn i ∈ Z, i ∈ [1; r] q ∈ Z, q ∈ [0; p − 1] cho (k) x0 = xi + pk q Giả sử (k) x = xi + pk q(1 ≤ i ≤ r, q ∈ Z, ≤ i ≤ p − 1) Khi đó, x ∈ Z Theo công thức khai triển Taylor thì: (k) f (x) = (k) f (xi ) +f (k) (xi )pk t (k) f ”(xi ) k f (n) (xi ) k n + (p t) + · · · + (p t) 2! n! n = deg f (k) f j (xi ) Ta lại có ∈ Z jk ≥ k + 1, i ≥ j! 64 Phương trình đồng dư f (x) ≡ (mod pk+1 ) tương đương với (k) (k) f (xi ) + f (xi )pk t ≡ (mod pk+1 ) hay (k) (k) f (xi ) (k) + f (xi )t ≡ k p (mod p k+1 f (xi ) )( ∈ Z) pk Đặt (k+1) xi (k+1) (k) = xi + pk qi (k+1) (k+1) ∈ [1; pk+1 ], xi ∈ Z P (xi (k) ≡ xi (mod p) nên Mặt khác, xk+1 i Khi xi (k+1) f (xi (k) ) ≡ f (xi ) ) ≡ (mod pk+1 ) (mod p) (k+1) ) ≡ (mod p) Như vậy, phương trình đồng dư f (x) ≡ (mod pk+1 ) có r nghiệm nguyên phân biệt đoạn [1; pk+1 ] Suy f (xi (k+1) x1 (k+1) , x2 , , x(k+1) r đồng thời (k+1) f (xi )≡0 (mod p) Bài toán chứng minh Áp dụng toán này, ta chứng minh toán sau: Bài toán 3.46 (VMO 2000, bảng A) Chođathức P (x) = x3 + 153x2 − 11x + 38 (i) Chứng minh đoạn [1; 32000 ] tồn sốnguyên dương a cho P (a) chia hết cho 32000 (ii) Hỏi đoạn [1; 32000 ] có tất sốnguyên dương a cho P (a) chia hết cho 32000 65 Lời giải Giả sử ≤ x ≤ 32000 P (x) ≡ (mod 32000 ) Khi x = 3y + 1, y ∈ Z, ≤ y ≤ 31999 − Ta có P (x) = P (3y + 1) = 27(y + 52y + 22y + 3) Phương trình đồng dư P (x) ≡ (mod 32000 ) tương đương với y + 32y + 22y + ≡ (mod 31997 ) Suy y = 3t + y = 3t với t ∈ Z, ≤ t ≤ 31998 − Nếu y = 3t + y + 52y + 22y + ≡ (mod 9) nên y = 3t Suy y + 52y + 22y + = 3(9t3 + 156t2 + 22t + 1) Phương trình đồng dư P (x) ≡ (mod 32000 ) tương đương với 9t3 + 156t2 + 22t + ≡ (mod 31996 ) Xét đathức f (t) = 9t3 + 156t2 + 22t + Ta có f (t) ≡ (mod 3) ⇔ 22t + ≡ (mod 3) Trong [1; 3], phương trình đồng dư 22t + ≡ (mod 3) có nghiệm t = Mặt khác f (2) ≡ 22 ≡ (mod 3) nên f (2) ≡ (mod 3) Theo toán 3.45, đoạn [1; 31996 ] phương trình đồng dư f (t) ≡ (mod 31996 ) có nghiệm nguyên t0 Với t ∈ Z, t ∈ [1; 31998 − 1] f (t) ≡ (mod 31996 ) tương đương với tồn h ∈ Z, ≤ h ≤ cho t = t0 + 31996 h Do đó, phương trình đồng dư f (t) ≡ (mod 31 996) có nghiệm nguyên phân biệt thuộc đoạn [1; 31998 − 1] Vậy đoạn [1; 32000 ] có số a cho P (a) ≡ (mod 32000 ) 66 Bài toán 3.47 (VMO2000, bảng B) Chođathức P (x) = x3 −9x2 +24x−27 Chứng minh vớisốnguyên dương n , tồn sốnguyên dương an cho P (an ) chia hết cho 3n Lời giải Với n = 1, chọn a1 = ta có P (3) ≡ (mod 3) Với n = 2, chọn a2 = ta có P (3) ≡ (mod 32 ) Với n ≥ 3, ta có P (x) ≡ (mod 3n ) nên P (x) ≡ (mod 3) ⇒ x = 3t Ta có P (x) = 27t3 − 81t2 + 72t − 27 P (x) ≡ (mod 3n ) ⇔ 3t3 − 9t2 + 8t − ≡ (mod 3n−2 ) Đặt f (t) = 3t3 − 9t2 + 8t − Trong đoạn [1; 3], phương trình f (t) ≡ (mod 3) có nghiệm t = Mặt khác, f (3) ≡ (mod 3) Theo tập 3.45, phương trình f (t) ≡ (mod 3n−2 ) có nghiệm Do đó, phương trình P (x) ≡ (mod 3n ) có nghiệm Nghĩa là, tồn an cho P (an ) chia hết cho Kết luận chương Trong chương 3, luận văn: • Trình bày số ứng dụng nộisuy toán cực trị, chứng minh bất đẳng thức, tập sốnguyên (không sử dụng bất đẳng thức AM − GM mà đòi hỏi điều chỉnh cách giải) • Trình bày số ứng dụng đathứcnộisuy Lagrange, đathứcnộisuy Abel − Newton, đathứcnộisuy Taylor toán cực trị, chứng minh bất đẳng thức • Trình bày số ứng dụng nộisuyđathức toán liên quan đến đathức nhận giá trị nguyên giá trị hữu tỷ • Trình bày số ứng dụng nộisuyđathức toán đồng dư 67 Chương Thực nghiệm sư phạm 4.1 Mục đích, tổ chức nội dung thực nghiệm sư phạm 4.1.1 Mục đích thực nghiệm sư phạm Thực nghiệm sư phạm nhằm đánh giá tính khả thi tính hiệu dạyhọcnộisuyđathứclớpđathứcvớihệsốnguyên 4.1.2 Nhiệm vụ thực nghiệm sư phạm • Chọn lớpthực nghiệm lớp đối chứng • Tiến hành dạythực nghiệm sốnội dung đề tài • Thực thu thập thông tin phản hồi thông qua phiếu điều tra, kiểm tra • Đánh giá chất lượng, hiệu việc dạy "nội suyđathứclớpđathứcvớihệsố nguyên" 4.1.3 Tổ chức thực nghiệm sư phạm • Đối tượng thực nghiệm: Thực nghiệm sư phạm tiến hành với đội tuyển họcsinhgiỏi khối 12, trường THPT Việt Đức (gồm 10 học sinh) 68 • Thời gian thực nghiệm: tiến hành từ ngày 01/08/2016 đến ngày 31/08/2016, gồm buổi, buổi • Lớp đối chứng: đội tuyển họcsinhgiỏi 12, trường THPT Việt Đức, trước dạynộisuyđathứclớpđathứcvớihệsốnguyên Căn để lựa chọn đối tượng thực nghiệm đối chứng trên: - Nộisuyđathứclớpđathứcvớihệsốnguyênnội dung khó, không nằm chương trình khóa THPT Do đó, nội dung cần phải thực nghiệm đối tượng họcsinh giỏi, thực nghiệm lớp đại trà Đồng thời, họcsinh cần biết số kiến thức giải tích Do đó, đội tuyển họcsinhgiỏi khối 12, trường THPT Việt Đức đảm bảo hai yêu cầu - Nhằm đảm bảo đồng lực nhận thứchọc sinh, chọn lớp đối chứng đối tượng thực nghiệm trước tiến hành thực nghiệm sư phạm 4.1.4 Nội dung thực nghiệm Tiến hành giảng dạy buổi, với thời lượng giờ/buổi nội dung sau: (i) Buổi 1: Một số vấn đề liên quan đến đathứcvớihệsốnguyên toán nộisuy (ii) Buổi 2-3: Ứng dụng nộisuyđathức toán bất đẳng thức cực trị (iii) Buổi 4: Ứng dụng nộisuyđathức toán phân thức nhận giá trị hữu tỷ (iv) Buổi 5: Ứng dụng nộisuyđathức toán liên quan đến đồng dư thức Yêu cầu họcsinh nhà tìm đọc thêm tài liệu, sưu tầm thêm tập lời giải, tự đề xuất đề cách giải liên quan đến chủ đề trình bày 69 Phương pháp tiến hành thực nghiệm sư phạm (i) Phương pháp thuyết trình (ii) Phương pháp nghiên cứu tài liệu (iii) Phương pháp dạyhọc phát giải vấn đề (iv) Phương pháp nhóm 4.2 Đánh giá kết thực nghiệm 4.2.1 Phương pháp đánh giá kết thực nghiệm Để tiến hành đánh giá kết thực nghiệm, tiến hành so sánh lớp đối chứng lớpthực nghiệm (đội tuyển họcsinhgiỏilớp 12, trường THPT Việt Đức trước sau tiến hành giảng dạy) tiêu chí sau: • Mức độ quan tâm họcsinhnội dung "nội suyđathứclớpđathứcvớihệsố nguyên" • Mức độ nhận thứchọcsinhnội dung "nội suyđathứclớpđathứcvớihệsố nguyên" • Thái độ họcsinhhọc Để đánh giá tiêu chí trên, tiến hành phát phiếu điều tra, thực kiểm tra tiến hành đánh giá kết việc thực tập giao họcsinhCácsố liệu thu từ điều tra thực nghiệm sư phạm xử lý thống kê với tham số đặc trưng: • Điểm trung bình, tính theo công thức x= N 70 n ni xi i=1 • Phương sai: đánh giá mức độ phân tán giá trị biến ngẫu nhiên xung quanh giá trị trung bình σ = N n (xi − x)2 i=1 • Độ lệch chuẩn: N σ= 4.2.2 n (xi − x)2 i=1 Đánh giá kết thực nghiệm Về mức độ quan tâm họcsinhnội dung "nội suyđathứclớpđathứcvớihệsố nguyên" Tôi tiến hành phát phiếu điều tra trước sau tiến hành thực nghiệm Nội dung phiếu điều tra sau: Câu Em họcnội dung nộisuynộisuyđathứcvớihệsốnguyên nào? A Chỉ học qua thầy cô giáo B Thông qua thầy cô giáo tài liệu tham khảo C Chỉ biết đến qua tài liệu tham khảo D Chưa họcnội dung Câu Các em có quan tâm đến nội dung nộisuynộisuyđathứcvớihệsốnguyên không? A Rất quan tâm B Có quan tâm C Ít quan tâm D Không quan tâm 71 Kết thu sau: Trước TN Sau TN Chỉ học qua thầy cô giáo 0 Học thông qua thầy cô giáo tài liệu tham khảo 10 Chỉ biết đến qua tài liệu tham khảo 0 Chưa họcnội dung 10 Bảng 4.1: Cách họcnộisuyđathứchọcsinh Trước TN Sau TN Rất quan tâm Có quan tâm Ít quan tâm Không quan tâm Bảng 4.2: Mức độ quan tâm họcsinhnộisuyđathứclớpđathứcvớihệsốnguyên Nhận xét: • Do đối tượng họcsinh không chuyên, nội dung lại không nằm chương trình khóa nên em họcsinh chưa nghe nói đến nội dung Sau thực nghiệm sư phạm, em họcsinh giảng dạy yêu cầu tìm hiểu thêm tài liệu tham khảo Mặc dù yêu cầu, với tỷ lệ 10/10 họcsinhthực yêu cầu kết đáng khích lệ • Sau tiến hành thực nghiệm, tỷ lệ họcsinh quan tâm đến nội dung tăng lên đáng kể Để đánh giá việc tự đọc tài liệu học sinh, yêu cầu họcsinh nộp lại tập sưu tầm đề xuất thêm họcsinh Kết thu họcsinh tự sưu tầm đề xuất 10 toán, tỷ lệ giống khoảng 70% Điều xảy em lấy từ số nguồn tài liệu trùng Một số em lấy đề tự giải Cá biệt có vài em tự đề xuất đề cách giải Điều chứng tỏ mức độ quan tâm họcsinhnội dung "nội suylớpđathứcvớihệsố nguyên" lớn 72 Về mức độ nhận thứchọcsinh "nội suylớpđathứcvớihệsố nguyên": tiến hành kiểm tra, vớinội dung sau: Kiểm tra 90p Bài 1: Cho a, b, c sốnguyên dương thỏa mãn điều kiện 0≤c≤b≤a≤5 a+b≤9 a + b + c = 11 Chứng minh a2 + b2 + c2 ≤ 45 Bài 2: Tính tổng S= 1 + + a(a − b)(a − c) b(b − a)(b − c) c(c − a)(c − b) Bài 3: Cho P (x) = an xn + an−1 xn−1 + · · · + a1 x + a0 n Chứng minh rằng: i=1 xki = với k = 0, 1, 2, , n − f (xi ) Bài 4: Chứng minh đẳng thức: 2n+1 m=0 (−1)m 22n+1 n = (−1) (2n + − 2m)!(2n + − m)! ((2n + 1)!!)2 Bài 5: Chođathức P (x) bậc n thỏa mãn P (s) = 2s với s = 1, 2, , n + Tính P (n + 2) Kết kiểm tra cho bảng sau: Họcsinh 10 Điểm 10 Bảng 4.3: Điểm kiểm tra sau thực nghiệm 73 Cácsố đặc trưng mẫu liệu cho đưới đây: • Điểm trung bình họcsinh x = 6, • Phương sai σ ≈ 3, 51 • Độ lệch chuẩn σ ≈ 1, 87 Kết kiểm tra cho thấy đasốhọcsinh nắm vấn đề nội dung "nội suyđathứclớpđathứcvớihệsố nguyên" Độ lệch chuẩn σ ≈ 1, 87 mức chưa cao, cho thấy chưa có đồng mức độ tiếp thu họcsinh Những họcsinh đạt điểm cao họcsinh có hứng thú cao hơn, tích cực đọc thêm tài liệu Đâyhọcsinh tự đề xuất toán Trước thực nghiệm, 100% họcsinh chưa họcnội dung "nội suyđathứclớpđathứcvớihệsố nguyên" nên đánh giá kết kiểm tra sau thực nghiệm mà không tiến hành kiểm tra trước thực nghiệm Về thái độ học tập: Để đánh giá thái độ học tập, trao đổi với giáo viên tham gia dự số tiết dạythực nghiệm Đây giáo viên dạy khóa họcsinhCác nhận xét tổng hợp thành ý kiến chủ yếu sau: • Họcsinh tham gia tích cực hơn, làm việc nhiều độc lập sovớilớphọc khóa Các tiết học diễn sôi nổi, họcsinh nhiệt tình, hào hứng tham gia hoạt động khám phá kiến thức, tích cực hoàn thành nhiệm vụ giao, hăng hái phát biểu • Tâm lý họcsinh tỏ thoải mái, tạo bầu không khí trao đổi tương đối tự giáo viên họcsinhHọcsinh thích thú học tập môn toán, cảm nhận sức hấp dẫn môn Toán nói riêng phương pháp "nội suyđa thức" nói riêng • Họcsinh thể khả sáng tạo, tư độc lập tốt sovới trước thực nghiệm • Họcsinh tham gia tiết học sôi hào hứng, tự phát giải vấn đề Một sốnội dung họcsinh tự đặt 74 toán tự giải Điều kích thích phát triển khả sáng tạo họcsinh Kết luận chương Trong chương 4, luận văn: • trình bày mục đích, cách thức tổ chức nội dung thực nghiệm sư phạm, nhằm kiểm nghiệm tính khả thi đề tài • trình bày kết thực nghiệm sư phạm Qua đánh giá đề tài có tính khả thi, có khả áp dụng thực tiễn 75 Kết luận Luận văn "Dạy họcnộisuyđathứclớpđathứcvớihệsốnguyênchohọcsinhkhá,giỏi trung học phổ thông" giải vấn đề sau: • Phân tích số đặc điểm bồi dưỡng họcsinhkhá,giỏi trường THPT không chuyên • Phân tích vị trí, thực trạng việc dạyhọcnội dung "nội suylớpđathứcvớihệsố nguyên" trường THPT không chuyên • Xây dựng hệ thống tập, hệ thống hóa xếp cách khoa học, thống toán nộisuy ứng dụng toán THPT • Kiểm chứng tính khả thi đề tài 76 Tài liệu tham khảo Trần Xuân Đáng (2005), Đathứcvớihệsốnguyên đồng dư thức, Hội Nghị Khoa Học "Các chuyên đề chọn lọc HệTHPT Chuyên", Hà Nội 2005 Nguyễn Văn Mậu (2005), Bất đẳng thức, định lý áp dụng, NXB Giáo dục Nguyễn Văn Mậu (2006), Các toán nộisuy áp dụng, NXB Giáo dục Nguyễn Văn Mậu, Lê Ngọc Lăng, Phạm Thế Long, Nguyễn Minh Tuấn (2006), Các đề thi Olympic Toán sinh viên toàn quốc , NXB Giáo dục MauPhat Nguyễn Văn Mậu, Trịnh Đào Chiến, Trần Nam Dũng, Nguyễn Đăng Phất (2008), Chuyên đề chọn lọc đathức áp dụng, NXB Giáo dục Kin Y.Li (2010), Lagrange Interpolation formular, Mathematical Excalibur, Volume 15, vol Teodora-Liliana T.R., Vicentiu D.R., Titu Andreescu (2009), Problems in real analysis: Advanced calculus on real axis, Springer TiTu Andreescu and Zuming Feng (2000), Mathemmatical Olympiads,19981999: Problems and Solutions around the worrld, The Mathematical Association of America 77 ... khăn dạy học nội suy đa thức lớp đa thức với hệ số nguyên bậc trung học phổ thông - Đưa vấn đề nội suy đa thức lớp đa thức với hệ số nguyên - Đưa số ứng dụng nội suy đa thức lớp đa thức với hệ số. .. suy nội suy lớp đa thức với hệ số nguyên? A Chỉ học sinh thi học sinh giỏi; B Học sinh có lực học giỏi trở lên; C Học sinh có lực học trở lên; D Tất học sinh Câu Các thầy cô dạy học nội dung nội. .. toán nội suy mà chưa có đề tài nghiên cứu "bài toán nội suy lớp đa thức với hệ số nguyên" việc dạy học chủ đề bậc trung học phổ thông Vì đề tài "dạy học nội suy lớp đa thức với hệ số nguyên cho học