1. Trang chủ
  2. » Giáo án - Bài giảng

Chương III - Bài 5: Khoảng cách

18 269 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 18
Dung lượng 4,54 MB

Nội dung

Các trường hợp cần xét Các trường hợp cần xét Khoảng cách Khoảng cách gia hai điểm hai điểm Khoảng cách Khoảng cách gia một điểm và một đường thẳng một điểm và một đường thẳng Khoảng cách Khoảng cách gia một điểm và một mặt phẳng một điểm và một mặt phẳng Khoảng cách Khoảng cách gia hai đường thẳng hai đường thẳng Khoảng cách Khoảng cách gia đường thẳng và mặt phẳmg đường thẳng và mặt phẳmg Khoảng cách Khoảng cách gia hai mặt phẳng hai mặt phẳng i. Kho¶ng c¸ch tõ mét i. Kho¶ng c¸ch tõ mét ®iÓm ®Õn mét ®­êng ®iÓm ®Õn mét ®­êng th¼ng, ®Õn mét mÆt th¼ng, ®Õn mét mÆt ph¼ng ph¼ng 1. 1. Kho¶ng c¸ch tõ mét ®iÓm ®Õn Kho¶ng c¸ch tõ mét ®iÓm ®Õn mét ®­êng th¼ng mét ®­êng th¼ng O a H α α d(O,a)=OH d(O,a)=OH Khi O n»m trªn a ta cã Khi O n»m trªn a ta cã d(O,a)=0 d(O,a)=0 Cho ®iÓm O vµ ®­êng th¼ng a. Chøng minh r»ng Cho ®iÓm O vµ ®­êng th¼ng a. Chøng minh r»ng kho¶ng c¸ch tõ O ®Õn ®­êng th¼ng a lµ bÐ nhÊt kho¶ng c¸ch tõ O ®Õn ®­êng th¼ng a lµ bÐ nhÊt so víi kho¶ng c¸ch tõ O ®Õn mét ®iÓm bÊt kú so víi kho¶ng c¸ch tõ O ®Õn mét ®iÓm bÊt kú cña ®­êng th¼ng a. cña ®­êng th¼ng a. Ho¹t ®éng 1 1,Trường hợp O không thuộc a Lấy M bất kỳ trên a TH1: M trùng với H khi đó OM=OH TH2:M không trùng H khi đó ta có tam giác vuông OMH ,OM là cạnh huyền ,OH là cạnh góc vuông suy ra OM>OH 2, Trường hợp O thuộc a ta luôn có OM>OH hoặc OM=OH KL:Vậy khoảng cách từ O đến a là bé nhất so với khoảng cách từ O đến một điểm bất kỳ thuộc a O a H M Giải: 2. Kho¶ng c¸ch tõ mét ®iÓm ®Õn mét mÆt ph¼ng 2. Kho¶ng c¸ch tõ mét ®iÓm ®Õn mét mÆt ph¼ng O H d(O,( α α )) ))=OH α α Khi O n»m trªn ( α α ) ) ta ta nãi d(O, nãi d(O,( α α )) )) =0 Cho điểm O và mặt Cho điểm O và mặt phẳng ( phẳng ( ) .Chứng minh .Chứng minh rằng khoảng cách từ O rằng khoảng cách từ O đến ( đến ( ) là bé nhất so với ) là bé nhất so với khoảng cách từ O đến khoảng cách từ O đến một điểm bất kỳ của một điểm bất kỳ của ( ( ). ). O H M KL:Khoảng cách từ O đến ( O đến ( ) là bé nhất so ) là bé nhất so với khoảng cách từ O đến một điểm bất kỳ của với khoảng cách từ O đến một điểm bất kỳ của a. a. Hoạt động 2 Các trường hợp cần xét Các trường hợp cần xét Khoảng cách Khoảng cách gia hai điểm hai điểm Khoảng cách Khoảng cách gia một điểm và một đường thẳng một điểm và một đường thẳng Khoảng cách Khoảng cách gia một điểm và một mặt phẳng một điểm và một mặt phẳng Khoảng cách Khoảng cách gia hai đường thẳng hai đường thẳng Khoảng cách Khoảng cách gia đường thẳng và mặt phẳmg đường thẳng và mặt phẳmg Khoảng cách Khoảng cách gia hai mặt phẳng hai mặt phẳng [...]... N Bài tập trắc nghiệm: 2 Câu 1: Cho hình lập phương ABCDA’B’C’D’ có cạnh bằng a Khoảng cách từ A đến mp(A’BD’) bằng a a/ a 2 b/ a 2 c/ d/ 4 2 a 2 Câu 2: Cho hình hộp chử nhật ABCDA’B’C’D’ có ba kích thước là AB=a,AD=b,AA’=c Khẳng đònh nào sau đây là sai? a/ AC’= a 2 + b 2 + c 2 b/ Koảng cách giữa hai đường thẳng BB’ và CC’ bằng b c/ Khoảng cách giữa ha đường thẳng BB’ và DD’ bằng a 2 + b 2 d/ Khoảng. .. BB’ và CC’ bằng b c/ Khoảng cách giữa ha đường thẳng BB’ và DD’ bằng a 2 + b 2 d/ Khoảng cách giữa hai đường thẳng AA’ và mp(BDB’D’) bằng 1 b + c 2 3 2 2/ Khoảng cách giữa hai cạnh đối của một tứ diện đều cạnh a là: 3a a) 2 a 2 b) 2 a 3 c) 2 d) a 2 Về nhà : -Bài tập:3,4/sgk -Tiết sau học tiếp phần còn lại và giải bài tập . xét Khoảng cách Khoảng cách gia hai điểm hai điểm Khoảng cách Khoảng cách gia một điểm và một đường thẳng một điểm và một đường thẳng Khoảng cách Khoảng cách. xét Khoảng cách Khoảng cách gia hai điểm hai điểm Khoảng cách Khoảng cách gia một điểm và một đường thẳng một điểm và một đường thẳng Khoảng cách Khoảng cách

Ngày đăng: 27/06/2013, 11:45

TỪ KHÓA LIÊN QUAN

w