Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 15 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
15
Dung lượng
528,5 KB
Nội dung
HĐ chấm thi THPT Hàn Thuyên Giáo viên giảng dạy: Đào Thị Lâm Trường THPT Quế Võ số I Hàm sốliêntục Sở giáo dục và đào tạo Bắc Ninh Môn dạy: đại số và giải tích lớp 11 nâng cao Tập thể lớp 11A3 Trường THPT Hàn Thuyên nhiệt liệt chào mừng các vị đại biểu và các thầy cô giáo về dự giờ Nhãm1 1 Bµi1:Cho hµm sè f (x) = x T¹i x = 0 hµm sè cã x¸c ®Þnh kh«ng? 0 0 ® ì ³ ï ï í ï ï î x lim g( x ) Nhãm 2 x khi x Bµi 2:Cho hµm sè g(x) = 2 khi x<0 TÝnh g(0), 0 0 ® ® ì ¹ ï ï í ï ï î x x a. lim h( x ) b. lim h( x ) Nhãm 3 x+1 khi x 0 Bµi 3:Cho hµm sè h(x) = 2 khi x = 0 TÝnh h(0), So s¸nh h(0) vµ 0 0 ® ® x x a. lim k( x ) b. lim k( x ) 2 Nhãm 4 Bµi 4:Cho hµm sè k(x) = x TÝnh k(0), So s¸nh k(0) vµ Hoạt động nhóm (kiểm tra bài cũ) ( ) ( ) ( ) ( ) x 0 x 0 x 0 0 ) lim g x 0; lim g x 2 V limg x Bµi 2: +)g 0 Ëy kh«ng tån t¹i + - ® ® ® = + = = ( ) ( ) ( ) ( ) ( ) x 0 x 0 x 0 B 2 limh x lim x 1 1 b)V limh x µi 3: a)h 0 Ëy h 0 ® ® ® = = + = ¹ ( ) ( ) ( ) ( ) 2 x 0 x 0 x 0 0 limk x lim x 0 b)V limk x Bµi 4: a)cã k 0 Ëy k 0 ® ® ® = = = = Bài1: f(x) không xác định tại điểm x=0 Lời giải Vậy theo em để hàmsố f(x) liêntục tại điểm x 0 phải thoả mãn điều kiện gì? Tiết 68: Hàmsốliêntục 1.Định nghĩa: (SGK) 0 0 0 0 x x x x y f ( x ) x ) x ) lim f ( x ) ) lim f ( x ) f ( x 0 Hµm sè liªn tôc t¹i ®iÓm nÕu: TX§ ) ® ® = ì ï ï + Î ï ï ï ï + $ í ï ï ï + = ï ï ï î Hàmsố không liêntục tại điểm x o gọi là gián đoạn tại điểm x o 0 0 0 o x x x x n ) x ) lim f ( x ) ) lim f ( x ) f ( x 0 Hµm sè y=f(x) liªn tôc t¹i ®iÓm x Õu: TX§ ) ® ® ì ï ï ï ï + Î ï ï ï + $ í ï ï ï ï + = ï ï ï î Hµm sè kh«ng x¸c ®Þnh t¹i x=0 Kiến thức cần nhớ y o x O x y O y O x y 0®x lim g( x )kh«ng tån t¹i 0 0 x lim h( x ) h( ) ® ¹ 0 0 x lim k( x ) k( ) ® = 2 2 x Giải: a. x = 3 hàmsố xác định 3 3 - ® = x lim f ( x ) ; Vậy để hàmsốliêntục tại x = 3 thì a = 3 x lim f ( x ) + 3 =a ® 3 3f ( ) = 0 0 0 o x x x x n )x TX lim f ( x ) ) lim f ( x ) f ( x ) 0 Hµm sè y=f(x) liªn tôc t¹i ®iÓm x Õu: § +) ® ® ì ï ï ï + Î ï ï ï ï $ í ï ï ï ï + = ï ï ï î Kiến thức cần nhớ f(x)=a 0 3 3 2 1 a=1 a=3 1 -1 ( ) 2 2 3 3 0 3 0 víi 0 x VÝ dô 1: Cho hs a víi x>3 T×m a ®Ó hµm sè liªn tôc t¹i x=3 b. XÐt tÝnh liªn tôc cña hµm sè t¹i =0 vµ t¹i =3 víi a CM hµm sè liªn tôc ì ï - £ £ ï = í ï ï î ¹ " Î x x f ( x ) a. x x c. x ; x y ( ) 2 2 3 3 0 3 0 với 0 x Ví dụ 1: Cho hs a với x>3 b. Xét tínhliêntục của hàmsố tại =0 và tại =3 với a CM hàmsốliêntục ỡ ù - Ê Ê ù = ớ ù ù ợ ạ " ẻ x x f ( x ) x x c. x ; 0 0 0 o x x x x )x TX lim f ( x ) ) lim f ( x ) f ( x ) Đ +) đ đ ỡ ù ù ù + ẻ ù ù ù ù $ ớ ù ù ù ù + = ù ù ù ợ Gii: )Tại x = 0 hàmsố xác địnhb 0 0 0 x f ( ) ; lim f ( x ) ; 0 + đ = = Vy hm s khụng liờn tc ti x =0 +)Tại x = 3 hàmsố xác định 3 3 3 x f ( ) ; lim f ( x ) ; 3 - đ = = Vy hm s khụng liờn tc ti x = 3 0 không tồn tại - đx lim f ( x ) 3 3 x lim f ( x ) a + đ = ạ Hs f(x) liờn tc ti x 0 nu Kin thc cn nh 0 3 o c. Hàmsố xác định x" ẻ ( ; ) ( ) ( ) ( ) o 2 0 o o o x x x 0;3 lim f x x 2x f x có = = đ " ẻ - ( ) 0 3; o Vậy hàmsốliêntục với x" ẻ ( ) liêntục trên (a;b) nếu nó liêntục tại mọi điểm thuộc a ) f ( x ) a;b b) liêntục trên [a;b] nếu: f(x) liêntục trên (a;b) +) +) + - đ đ ỡ ù ù + ù ù ù = ớ ù ù ù = ù ù ợ x a x b f ( x ) ) lim f ( x ) f ( a ) lim f ( x ) f ( b ) Hoàn thành mệnh đề: Hàmsố f(x) liêntục trên [a;b) nếu . 2. Hm s liờn tc trờn mt khong, trờn mt on nh ngha: (SGK) c)Chỳ ý:(sgk) ( ) [ ) ( ) ( ) ( ) ( ) x a Tr H li n v lim f x f a ả lời: àm số f x ên tục trên a;b ếu f x liêntục trên a;b à + đ = ( ) Ví dụ 2: CM hàmsố f x = x-3 liêntục trên tập xác định của nó? [ ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ) 0 0 0 0 0 x x x x x 3 Gi D 3; x 3; c lim f x lim x 3 x 3 f x v li L lim ải: TXĐ: ó: ậy f x ên tục trên 3;+ ại có: f x =0=f 3 Vậy f x liêntục trên 3;+ + đ đ đ = +Ơ " ẻ +Ơ = - = - = Ơ Ơ [...]... Hm s liờn tc trờn mt khong, trờn mt on nh ngha: (SGK) a ) f ( x ) liêntục trên (a;b) nếu nó liêntục tại mọi điểm thuộc ( a;b) Mnh sau ỳng hay sai: 1)Hm s f(x) liờn tc trờn [a;b] thỡ liờn tc ti mi im trờn onú? Sai 2)Hm s y=x+1 liờn tc trờn R ỳng 1 b) f ( x ) liên tục trên [a;b] nếu: 3 )Hàm số y = li ên tục trên x ỡ ù + ) f(x) liên tục trên (a;b) ù ( -Ơ ;0) và ( 0;+Ơ ) ù ù ù +) lim f ( x ) = f ( a... thi l ng khongl ng lin lin nột trờn nộtkhong liờn tc ú ỡ x khi x 0 trờnkhong ù g(x) = ù ớ ù 2 khi x1 ù ùx ợ có tập xác định là R nên liên tục trên R ỳng . sai: 2 )Hàm số y=x+1 liên tục trên R 4 )Hàm số y=sinx liên tục trên R Sai Đúng Đúng Đúng em hãy so sánh khoảng liên tục và khoảng xác định của hàm số trên. x ên tục trên 3;+ ại có: f x =0=f 3 Vậy f x liên tục trên 3;+ + đ đ đ = +Ơ " ẻ +Ơ = - = - = Ơ Ơ 1 )Hàm số f(x) liên tục trên [a;b] thì liên tục tại