143 BAI TAP GIOI HAN DAY SO - HAM SO - WWW.MATHVN.COM I H N DÃY S 3 lim 6n − 2n + 1 lim lim n 3 − 2n n 2 + 4n − 5 1 − n + 2n 4n 3 + 6n 2 + 9 2n 3 1 − 5n 2 lim + 2n 2 + 3 5n + 1 lim 3 n3 + n lim n+2 ( ) 3 lim n + n + 3n + 2 lim lim 3 4n 3n + 1 lim n 2 −1 2.3n + 4n ( ( lim 3 n 1 + 2 + ... + n 3 3 1 + 2 + ... + n 3 = 2 11n + n + 2 lim 3 13 + 23 + ... + n 3 3n + n − 2 lim n 6 − 7n 3 − 5n + 8 lim n + 12 lim 1 + 2n − n 3n − 1 − 2n − 1 ) n2 + n + 2 − n + 1 ( lim ( lim ) 2 ( n + 1) 2 2 + 3 3 1 1 1+ + 5 5 lim 3n − 2.5n ) 2 + ... + 2 3 + ... + 1 5 2 n n 4 n − 5n n n +3 − n −5 lim 1 + 2 + ... + n n2 3 lim n 2 + 3.5n 7 + 3.5n n +1 − n n2 + 1 − n + 1 lim 3n + 2 2n 2 + n + 1 lim 4 lim ) 1 − 3n 2 n. 1 + 3 + ... + (2n − 1) 1+ 2 2n 2 − n lim n 6 + 5n 5 3 2 4 −2n 2 + n + 2 2n 2 − 3 lim n 5 + n 4 − 3n 2n 2 − n + 3 lim 2 3 −3n 5 + 7n 3 − 11 4 lim n 3 − 5n + 7 3n 4 + 5 7n 2 − 3n + 2 3n 3 + 2n − 1 lim lim n2 + 5 2n 2 − n lim 2n − n + n + 2 n 2 + 4 + ... + 2n 3 2n 3 − 4n 2 + 3n + 3 2n 4 + 3n − 2 lim lim 3n − 7n + 11 lim 5n 2 + n n5 + n 4 − n − 2 lim 3n 3 + n 2 + 7 2 ( n2 + n + 1 − n lim ( lim ) n2 − n + 3 − n (−3)n + 5n ( −3)n +1 + 5n +1 ( lim n 2 n − n 2 + 1 ) lim 1 n + 2 − n +1 GI I H N HÀM S ( 3x 2 x→ 2 1. lim ) 5. lim x 2 − 4 + 11) x 4x + 2 x −3 3x 6 − 2x 5 + 5 3 x →−2 2 x →−∞ x 6 − 5x + 1 10. lim 3x − x + 5 7. lim x →9 9x − x 2 3 ( 3x 3. lim 2 x →1 6. lim x→ 3 9. lim ( 7x + 7x + 11 2. lim x3 − 2 11. lim 3 + 1)( 2 − 3x ) 7x + 11 4. lim 2 x 1 − x →0 x x +1 8. lim x →−∞ x2 + 5 2 2x 4 − 3x + 5 x 4 − 2x 2 12. lim + 3− x 3− x x →−∞ x →−∞ 6x − 3x + 2 x →3 3x − 2 5x − 2 3− x 3− x x+2 x 4 − x2 x3 + 2 2 13. lim 14. lim 15. lim 16. lim 17. lim x →3 3 − x x → 0+ x − x x → 2− 2 − x x →3− 3 − x x →− 2 x 2 − 2 x →+∞ 18. lim x 4 − 27x x →3 2x 2 22. lim x →+∞ 1 19. lim x 2x 4 + x 2 + 1 20. lim 3 2x 5 + x 3 − 1 21. lim x 2 + x + 2x 2x + 3 ( 2x 2 − 1)( x3 + x ) x →−∞ 23. lim ( 2x 3 − 5x 2 + 3x − 1) 24. lim 2x 4 − 5x 2 + 1 x →+∞ x →+∞ x →−2 x 2 − 3x − 9 ( x + 1) x 4 − 16 + 6x + 8 x →+∞ ) www.MATHVN.com 2x + 1 x−2 25. lim x → 2+ 29. lim x3 − 8 x →2 x 2 x → 2− x →( −3) x →4 x 2 x →3− lim x →−4 x 2 x →2 x →0 x →0 x →1 x 2 3− 5+ x x →4 1 − 5 − x lim lim x →2 7 + 2x − 5 x −3 x 2 + 2x − 15 x+5 lim x →−∞ 5+ x − 5− x x lim + x →−2 x5 − x − 6 8 + 2x − 2 x+2 2 f (x) = mx 3 x →0 x− x+2 4x + 1 − 3 lim x →+∞ 3x 2 − 5x − 2 x −1 lim lim f (x) 3 lim f ( x ) = lim lim x →0 4 − x2 − 2 9 − x2 − 3 x 2 − 4x + 3 x →+∞ x 4 + 4x x →−∞ x2 + 3 − 2 x 2 + 3x − 4 lim x2 −1 1 − 3x + x 2 − 1 + x x x +1 x3 − 2 (x − 1)2 lim x →+∞ x 4 − 5x 3 + 6 x 2 − 12x + 20 x 6 − 4x 4 + 4 x2 − x − 6 x →−∞ f (x) = x →2 ;x>2 lim x →−∞ x 2 3 2x − 3x + 1 2x − 1 − x x −1 x →1 x →−1 x →−∞ x2 − 1 x( x + 5) − 6 lim + 2x − 3 2 x − 3x lim + x →0 3 x − 2x ;x≤2 lim lim lim x2 − 4 x 2 − 25 x →1 lim lim x 2 + 3x − 10 x →0 x2 − x x →1 x −1 x 2 + 4x x + 4 −3 x →5 x−2 −2 x−6 x 2 − 3x + 2 x →−4 lim 1+ x − 1− x x x 2 + 3x − 4 3x − 5 − 1 x−2 x →2 lim lim x2 − x − 6 x →−2 lim x →6 lim x →1 x →+∞ (x − 1)2 x 3 + 4x 2 + 4x lim 3x − 2 − 4x 2 − x − 2 lim x 3 + 3x 2 + 2x lim x →−∞ x −3 2x + 10 − 4 lim x →3 x →0 x →0 x 2 − 4x + 3 x →1 x3 − 1 x →1 x(x + 5) − 6 1 + x + x2 −1 x lim 6x 2 + 3 + 3x lim + 2x − 3 lim x →9 x →5 lim lim 5−x 5− x lim x +1 x →−1 − 5x − 2 lim x →1 x 2 + 2x − 3 x+9 −2 x−7 lim 1 + x − x2 + x + 1 x x →0 x −1 lim lim x →7 1 − 2x + x 2 − (1 + x ) x lim 4 lim x2 − 4 x →2 x − 2 x4 −1 x2 − x − 6 x →−2 x 1+ x −1 lim lim − 12x + 20 x2 + 5 − 3 . x−2 lim x2 + x +1 −1 3x lim x 2 + 2x − 15 lim x →−5 x+5 x 3 + 3x 2 + 2x 9 − 3x 3 x →0 x 2 + 3x − 10 x → 2 3x 2 2x 2 + x + 10 37. lim x2 − x x2 +1 x →+∞ x →+∞ x −1 x3 − 5 lim 33. lim x2 + x x →1+ lim x 2 + 2x − 15 lim x →3 x −3 x 2 − 5x + 6 x3 + 1 − 1 36. lim − 4x x 2 − 2x x → 2+ 27 − x 3 x −1 lim x →1 1 − x ) x →0 x3 − 8 39. lim ( 2x 3 − 5x 2 + 3x − 1 28. 32. lim x −2 35. lim 3− x 38. lim x →+∞ ( x + 3 )2 − x2 − 3 x →− 3 lim 31. −4 27. lim 2x 2 + 5x − 3 x3 + 3 3 34. lim 2x + 1 x−2 26. lim 3x − 1 ; x ≤ 1 2 x + 1 ; x > 1 x 2 − 5x + 6 mx + 4 ;x>2 lim f (x) x →1 Tìm m hàm s có gii hn ;x≤2 khi x → 2 lim x x →+∞ 2 lim x →+∞ ( ( ) x2 + 1 − x2 − 2 lim x →+∞ ) ( ) x 2 − 7x + 1 − x 2 − 3x + 2 ( x − 4 − x2 − 7 x + 2 x 2 − 2x + 1 − x 2 − 6x + 3 xlim →+∞ ) lim x →+∞ ( x 2 − 4x + 1 − x 2 − 9x ) www.MATHVN.com 60 BÀI T P GI I H N DÃY S 1, lim n 2 - 2n + 1 3n 2 + n - 3 2, lim 4, lim n n - n +1 n2 + 3 5, lim 2 8, ) 16, lim 4n 2 + n + 1 -n - 3 ( 2n - 1) n 3 19, lim 2007 - n + 3n - 1 n 3 - 4n + 1 -4n 3 + n 2 - 2 2007 - 3n -1 17, lim 2000 + 3n + 6 2n 2 - n - 1 3n - n + 1 2 ( 2n )( + 1) ( 4n + 1 2n 2 - 4n + 2 26, lim ) ( 5n 2 )( 29, lim ) 44, lim 4 2n + 3n - 2 ) ) ) n n - 2n + 6 3 n3 + 7 30, lim ( 2n ( 3n - 2 ) ) - 1 - ( n + 1) ) n - 3 n +1 ( n - 1) lim 45, lim 3 n 2 - 3n + 1 - 2n ( ) 2 - n 3n + 2 ) ( 51, lim ( ) n + 3 - n +1 n n + 3n - 1 5n + 7 n2 + 2 - n n 48, lim ) n 2 + 4n + 2 - n + 2 54, lim n + 5 57, lim 2n - 5 - n + 2 n 2 + 3n + 3 n 3 + n 2 - 2n ( 3n + 2 2n + 1 - n ( ) 4 4n 2 - 3n + 1 - 2n ( ) 2 ( -2 ) + 3 n n ( -2 ) - 3n +1 ( 42, 2 ( 4n + 3) 53, lim n 59, lim 4n 2 - 1 + 2n - 1 39, lim 56, lim ) ( ) n + 1 - n2 + 2 n 3 + 2n 2 + 1 - n n + 2 n ( 3n - 1) 27, lim ( ( 50, lim ( 2n 2 + 1 - 2n 2 + n + 1 3 5n - 3n + 2 36, lim - n 3 + 4n - 1 2 ) 2 ) 47, lim 1 ( 3n 2 + 1 + n 2 + 2n - 1 ( 3n 2 + 3n - 1 41, lim 3 2n - 2n + 1 + n - 2n + 1 ) 4 33, lim 2n 2 - n 40, lim n +1 3 2 2 n +1 + 3n +1 2 n + 3n 38, lim 2n - n 3 + 1 58, lim ( n 37, lim -2n 4 - 3 n + 1 55, lim 24, lim 2n + 4 35, lim n 2 - 3n - 10 n2 + 2 - n 1 + 2 + 3 + ... + n n2 n 2 5 n - 3n 5 n +1 + 3n + 2 n2 + n + 5 - n 21, lim n 2 - n + 3 ( 4n - 7 ) 34, lim ( 49, lim ( 52, lim ( n +1 - 2 18, lim n +3 ( 2n + 1) - ( 3n - 1) 32, lim 46, lim ) 3 4 2 n + 3n 3n + 1 ( 2n - 1) -2n n - 4n + 1 3 + 3n - 1 2n + 6 31, lim 43, lim n 3 + n 2 - 2n - 4n 15, lim n 3 + 1 - n 2 + 2n n 5 + 3n - 1 3 2 3 + 2 -3n - 1 2 4 ( n + 1 ) - ( n - 1) lim 4 4 ( n + 1 ) + ( n - 1) 2 2n 2 + 1 - n 2 + 1 n +1 23, lim n 3n n - 2n + 1 n 3 + 3n + 1 - 3n 2 + 4 3n - 1 ( n + ( -1) ( n - 3)( -2n + 4n - 1) 12, lim ( 6n + 2n - 1) ( 2n - 1) ) 8n 4 + 4n 3 - 1 ( 3n - 1) ( n 20, lim 2 28, lim n +3 -6n - n + 1 n 1 + 3 + 5 + ... + ( 2n + 1) 3 9, )( 2 ( n + 1)( 2n - 5 ) ( 3n - 1)( n + 2 ) 4 n 2 + 1 - 3n - 1 14, lim 8n 3 + 2n - 1 + 3n 25, lim 6, lim ( n + 1) - 3n lim 2 ( 2n - 1) 2n - 4 n + 7 22, lim 3, lim 2 (n 11, lim - 1 ( 3n + 2 ) - n 3 + 2n - 1 13, lim ( n + 1)( n + 2 ) 2 4n + 6 7, lim n -1 (n 10, lim www.MATHVN.com ) ) n-2) 2n + 3 - 2n - 1 ( 2n - 1 n +3 ) 60, lim ( 3 n 3 + 3n 2 + 1 - n 2 + 2n ) [...]... 1 ; x ≤ 1 2 x + 1 ; x > 1 x 2 − 5x + 6 mx + 4 ;x>2 lim f (x) x →1 Tìm m hàm s có gii hn ;x≤2 khi x → 2 lim x x →+∞ 2 lim x →+∞ ( ( ) x2 + 1 − x2 − 2 lim x →+∞ ) ( ) x 2 − 7x + 1 − x 2 − 3x + 2 ( x − 4 − x2 − 7 x + 2 x 2 − 2x + 1 − x 2 − 6x + 3 xlim →+∞ ) lim x →+∞ ( x 2 − 4x + 1 − x 2 − 9x ) www.MATHVN.com 60 BÀI T P GI I H N DÃY S 1, lim n 2 - 2n + 1 3n 2 + n - 3 2, lim 4, lim n n - n +1 ... lim ) n2 − n + − n (−3)n + 5n ( −3)n +1 + 5n +1 ( lim n n − n + ) lim n + − n +1 GI I H N HÀM S ( 3x x→ lim ) lim x − + 11) x 4x + x −3 3x − 2x + x →−2 x →−∞ x − 5x + 10 lim 3x − x + lim... + 3 34 lim 2x + x−2 26 lim 3x − ; x ≤ x + ; x > x − 5x + mx + ;x>2 lim f (x) x →1 Tìm m hàm s có gii hn ;x≤2 x → lim x x →+∞ lim x →+∞ ( ( ) x2 + − x2 − lim x →+∞ ) ( ) x − 7x + − x... x − − x2 − x + x − 2x + − x − 6x + xlim →+∞ ) lim x →+∞ ( x − 4x + − x − 9x ) www.MATHVN.com 60 BÀI T P GI I H N DÃY S 1, lim n - 2n + 3n + n - 2, lim 4, lim n n - n +1 n2 + 5, lim 8, ) 16, lim