1. Trang chủ
  2. » Khoa Học Tự Nhiên

hướng dẫn học sinh khai thác sử dụng công thức nghiệm

13 538 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 122,5 KB

Nội dung

A. ĐẶT VẤN ĐỀ I. LÝ DO CHỌN ĐỀ TÀI Giải toán là một trong những vấn đề trung tâm của phương pháp giảng dạy môn toán, bởi lẽ giải toán là việc mà cả người học lẫn người dạy thường phải làm, đặc biệt là đối với học sinh bậc THCS thì việc giải toán là một trong những hình thức chủ yếu của việc học toán. Thực tế có một số lượng bài toán đáng kể trong SGK đã gây cho học sinh gặp những khó khăn nhất định trong việc đi tìm lời giải dẫn đến tâm lý sợ và ngại, thiếu tự tin vào khả năng của mình. Đây là trở ngại lớn cho ý chí tiến thủ vươn lên trong học tập của học sinh. Chính vì vậy trong quá trình giảng dạy toán ở bậc THCS ngoài việc truyền thụ những kiến thức lý thuyết cơ bản trong SGK, thì người thầy phải có cách nhìn bao quát mở rộng cho từng phần kiến thức, đi sâu nghiên cứu, tìm tòi khai thác và hướng dẫn học sinh khai thác sử dụng linh hoạt từng phần kiến thức cơ bản đó áp dụng vào giải các dạng toán. Trên cơ sở đó xây dựng phương pháp giải cho từng dạng toán cũng như rèn cho các em phương pháp suy nghĩ, phương pháp suy luận trong việc tìm lời giải một bài toán. Mặt khác đối với khối lớp 9, lớp cuối cấp chuẩn bị thi tốt nghiệp kết thúc chương trình THCS thì việc chuẩn bị tốt các kiến thức nói chung cũng như việc rèn kỹ năng giải thành thạo, linh hoạt các bài toán nói riêng lại càng trở nên hết sức cần thiết. Hơn thế nữa việc học tốt môn Toán giúp các em học tốt các môn tự nhiên khác cũng như học tốt môn Toán trong những năm học sau này. Trong sách Đại số 9, phần giải phương trình bậc 2, là một trong những phần kiến thức cơ bản của môn Toán 9. Nắm chắc phương pháp giải phương trình bậc 2 không những giải quyết một số lượng lớn bài tập ở phần này mà còn là nền tảng quan trọng trong việc “Giải bài toán bằng cách lập phương trình” ở phần tiếp theo. Chính vì những lý do đó tôi suy nghĩ, trăn trở và mạnh dạn đưa ra phương pháp: “Hướng dẫn học sinh 1 khai thác sử dụng công thức nghiệm”, sau khi thực hiện thì thu được kết quả khá khả quan. II. PHẠM VI VÀ THỜI GIAN THỰC HIỆN: 1. Phạm vi của đề tài Trong khuôn khổ đề tài này tôi chỉ đề cập đến cách khai thác sử dụng công thức nghiệm để giải toán trong chương trình đại số lớp 9. Đối tượng để tôi thể nghiệm đề tài này là học sinh lớp 9A trường THCS Xxx . 2. Thời gian thực hiện: Đề tài này tôi đã áp dụng trong năm học 2004 - 2005 ở lớp 9A trường THCS Xxx và thu được kết quả cao. 2 B. NỘI DUNG CỦA ĐỀ TÀI: I. THỰC TRẠNG TÌNH HÌNH QUA KHẢO SÁT : Qua thực tế kiểm tra 37 em học sinh lớp 9A trong thời gian 20 phút với đề bài sau: (Khi chưa thực hiện đề tài) Bài 1: Giải các phương trình bậc 2 sau: (Bằng công thức nghiệm) a. - 2x 2 + 5x + 3 = 0 b. 3x 2 + 12x - 66 = 0 Bài 2: Không tính ∆, hãy giải thích tại sao phương trình sau có 2 nghiệm phân biệt: 3 x 2 - 2 ( 2 + 3 ) x + - 3 =0 Kết quả bài làm của học sinh như sau : Số học sinh dự khảo sát Kết quả Yếu TB Khá Giỏi 37 6 = 16,3% 18 = 48,6% 11 = 29,7% 2 = 5,4% Qua bài làm của học sinh, tôi thấy một số em còn lúng túng chưa vận dụng tốt và linh hoạt công thức nghiệm dẫn đến kết quả bài làm còn thấp, chất lượng điểm khá giỏi chưa cao (chỉ đạt 35,1%). Do vậy bản thân tôi thấy cần thiết phải hướng dẫn cho các em cách khai thác sử dụng linh hoạt công thức nghiệm, từ đó hình thành phương pháp giải các dạng toán cơ bản của phần kiến thức này giúp các em giải nhanh và chính xác các bài toán. II. NỘI DUNG CHỦ YẾU VÀ BIỆN PHÁP THỰC HIỆN * Phần 1. Trước hết tôi củng cố và khắc sâu thêm cho các em về công thức nghiệm: - Công thức nghiệm của phương trình bậc 2: ax 2 + bx + c = 0 ∆ = b 2 - 4ac + Nếu ∆ < 0: Phương trình vô nghiệm 3 - b + Nếu ∆ = 0: Phương trình có nghiệm kép: x 1 = x 2 = 2a -b ± ∆ + Nếu ∆ > 0: Phương trình có 2 nghiệm phân biệt: x 1,2 = 2a (Chú ý: Nếu ac < 0 thì ∆ = b 2 - 4ac > 0 => PT chắc chắn có hai nghiệm phân biệt ) - Công thức nghiệm thu gọn: (áp dụng khi b chẵn) Đặt b = 2b’; ∆’ = b’ 2 - ac + Nếu ∆’ < 0 : Phương trình vô nghiệm -b’ + Nếu ∆’ = 0 : Phương trình có nghiệm kép: x 1 = x 2 = a -b’± '∆ + Nếu ∆’ > 0 : Phương trình có 2 nghiệm phân biệt: x 1,2 = a * Phần 2. Giới thiệu; Hướng dẫn và rèn cho các em cách khai thác sử dụng công thức nghiệm vào giải một số dạng toán cụ thể: Dạng 1: Giải phương trình bậc hai ax 2 + bx + c = 0 (a ≠ 0) Phương pháp giải: - Khi giải phương trình bậc 2 trước hết biến đổi phương trình đã cho về phương trình có hệ số đơn giản nhất tương đương với phương trình đó để việc tính toán gọn hơn. - Nếu phương trình có hệ số a < 0 thì nhân cả hai vế của phương trình với - 1 để có hệ số a > 0. - Đối với phương trình bậc hai đủ thì sử dụng công thức nghiệm tổng quát và công thức nghiệm rút gọn. - Đối với phương trình bậc 2 khuyết b, c ta không sử dụng công thức nghiệm của phương trình: + Đối với PT bậc hai khuyết c (c = 0) ax 2 + bx = 0 <=> x (ax +b) = 0 4 PT có hai nghiệm x 1 = 0, x 2 = -b/a + Đối với PT bậc hai khuyết b (b = 0) ax 2 + c = 0 <=> x 2 = - • Nếu >0 (Hay a và c cùng dấu) => PT vô nghiệm • Nếu <0 (hay a và c trái dấu) => PT có hai nghiệm là x 1 = - và x 2 = Ví dụ: Giải các phương trình bậc hai sau: a) x 2 - 10x + 21 = 0 b) -x 2 - 5x + 14 = 0 c) x 2 - 2(1 + 2 ) x + 4 + 3 2 = 0 d) 4x 2 - 2 (1+ 3 )x + 3 = 0 Hướng dẫn giải: a) Hệ số a = 1, b = -10, c = 21, b’ = - 5, ∆’ = 25 - 21 = 4 > 0 -> Phương trình có hai nghiệm phân biệt x 1 = 5 + 2 = 7 x 2 = 5 - 2 = 3 b) - x 2 - 5x + 14 = 0 <-> x 2 + 5x - 14 = 0 Hệ số a = 1, b = 5, c = -14, ∆ = 25 + 56 = 81 > 0 -> Phương trình có hai nghiệm phân biệt -5 + 9 x 1 = =2 2 -5 - 9 x 2 = =-7 2 c) x 2 - 2(1 + 2 ) x + 4 + 3 2 = 0 Hệ số a = 1, b = -2 (1 + 2 ), c = 4 + 3 2 ∆’ = -2 - 2 <0 => phương trình vô nghiệm d) 4x 2 - 2 (1+ 3 )x + 3 = 0 5 a c a c a c c a − c a − Hệ số a = 4, b = - 2 (1+ 3 ), c = 3 , b’ = - (1+ 3 ) ∆’ = ( 3 - 1) 2 > 0 => phương trình có 2 nghiệm phân biệt: 3 1 x 1 = ; x 2 = 2 2 Bài tập tự luyện Giải các phương trình sau: (Dùng công thức nghiệm) a) x 2 - 4x + 1 = 0 b) 3x 2 + 7x + 2 = 0 c) (x +1)(x+2) = 70 Dạng 2: Xác định số nghiệm của phương trình bậc hai ax 2 +bx + c= 0(a≠0) Phương pháp giải: - Xác định các hệ số a, b, c của phương trình ax 2 + bx + c (a≠0) - Tính ∆ = b 2 -4ac hoặc ∆’ = (b’) 2 - ac + Nếu ∆ <0 (∆’ <0) phương trình vô nghiệm + Nếu ∆ =0 (∆’ =0) phương trình có nghiệm kép + Nếu ∆ > 0 (∆’ > 0) phương trình có hai nghiệm phân biệt Ví dụ: Xác định hệ số a, b, c và số nghiệm của các phương trình sau: a) 2x 2 + 3x + 1 = 0 b) 3x 2 + 2x + 5 = 0 c) 4x 2 - 4x + 1 = 0 d) 3x 2 - 2 3 x- 2 = 0 Hướng dẫn giải: a) Hệ số a= 2, b = 3, c = 1, ∆ = 9 - 8 = 1 -> Phương trình có hai nghiệm phân biệt b) Hệ số a = 3,b =2,c =5,∆ = 4-60 = -56 <0 -> Phương trình vô nghiệm 6 c) Hệ số a = 4, b = -4, c =1, ∆=16 - 16 = 0-> phương trình có nghiệm kép d) Hệ số a = 3, b = - 2 3 , c= 5, ∆ = 12 + 24 = 36>0 -> Phương trình có hai nghiệm phân biệt Bài tập tự luyện: Không giải phương trình, hãy xác định số nghiệm của các phương trình sau: a) x 2 + 3x - 10 = 0 b) 3x 2 - 7x + 1 = 0 c) 4 x 2 - 12 x + 9 = 0 Dạng 3: Không tính ∆ , chứng minh phương trình bậc hai có hai nghiệm phân biệt Phương pháp giải: - Xác định các hệ số a, b, c của phương trình ax 2 + bx + c = 0 (a ≠0) - Nếu ac<0 thì phương tình có hai nghiệm phân biệt vì ∆ =b 2 -4ac >0 Ví dụ: Hãy giải thích tại sao không cần tính ∆ mà có thể kết luận ngay mỗi phương trình sau có hai nghiệm phân biệt. a) (1 - 2 ) x 2 - 2 (1 + 2 ) x+1+ 2 = 0 b) mx 2 - 2(m+1)x-2m = 0 (m ≠ 0) Hướng dẫn giải : a) (1 - 2 )x 2 - 2 (1 + 2 ) x+1+ 2 = 0 Hệ số a = (1 - 2 ), b = - 2 (1 + 2 ), c = 1+ 2 => a < 0, c > 0 <=> ac < 0 -> Phương trình có hai nghiệm phân biệt b) mx 2 - 2(m+1)x - 2m = 0 (m ≠ 0) Hệ số a = m, b = -2(m+1), c = -2m => ac - 2m 2 < 0 ∀ m ≠ 0 -> Phương trình có hai nghiệm phân biệt 7 Bài tập tự luyện: Không tính ∆, hãy chứng minh các phương trình bậc hai sau có hai nghiệm phân biệt. a) 3x 2 - 5x - 8 = 0 x 2 4 1 b) + x- = 0 3 5 12 c)x 2 - 2 ( 3 - 1 ) x - 2 3 = 0 Dạng 4: Định tham số để phương trình bậc hai thoả mãn điều kiện về nghiệm số Phương pháp giải: - Cho phương trình ax 2 +bx +c = 0 (a ≠ 0) (1) (1) có nghiệm ⇔ ∆ ≥ 0 (∆’ ≥ 0) (1) có hai nghiệm phân biệt ⇔ ∆ > 0 (∆’ >0) (1) có nghiệm kép ⇔ ∆ = 0 (∆’ = 0) (1) vô nghiệm ⇔ ∆ < 0 (∆’ < 0) (1) Có 2 nghiệm cùng dấu ⇔ ∆ > 0 c > 0 a c (1) Có 2 nghiệm trái dấu ⇔ < 0 a Ví dụ 1: Với giá trị nào của m phương trình sau vô nghiệm: a) 3x 2 - 4x + 2m = 0 b) m 2 x 2 + mx + 5 = 0 Hướng dẫn giải: 8 a) 3x 2 - 4x + 2m = 0 vô nghiệm ⇔ ∆’ < 0 ∆’ = 4 - 6m <0 ⇔ m > 2/3 Phương trình vô nghiệm khi m >2/3 b) m 2 x 2 + mx + 5 = 0 (m ≠ 0) vô nghiệm ⇔ ∆ <0 ∆ = m 2 - 4.5m 2 = -19m 2 <0 ∀ m ≠ 0 Phương trình vô nghiệm với mọi m ≠ 0 Ví dụ 2: Chứng minh rằng phương trình x 2 - 10x - m 2 = 0 luôn có 2 nghiệm trái dấu với mọi giá trị của m ≠ 0. Hướng dẫn giải: Phương trình x 2 - 10x - m 2 = 0 có a = 1, c = - m 2 c => = - m 2 < 0 với mọi m ≠ 0 a Vậy phương trình luôn có hai nghiệm trái dấu với mọi m ≠ 0. Ví dụ 3: Tìm giá trị của m để phương trình: (m + 1) x 2 - 2 (m - 1) x+m - 3 = 0 có 2 nghiệm cùng dấu Hướng dẫn giải: Phương trình đã cho 2 nghiệm cùng dấu ∆ > 0 c ⇔ > 0 a ⇔ (m -1) 2 - (m + 1) (m - 3) > 0 ⇔ m 2 - 2m + 1 - m 2 +2m+3 = 4>0 m - 3 m - 3 > 0 > 0 m + 1 > 0 m + 1 m - 3< 0 m + 1 ≠ 0 m + 1 < 0 m ≠ - 1 ⇔ m > 3 m >- 1 m < 3 m <- 1 m ≠ - 1 ⇔ m > 3 9 m < - 1 Vậy với m > 3 hoặc m < - 1 thì phương trình có 2 nghiệm cùng dấu Bài tập tự luyện: 1. Tìm có giá trị của k để phương trình 10x 2 + 40x + k = 0 a) có hai nghiệm phân biệt b) Có nghiệm kép c) Vô nghiệm 2. Tìm giá trị của m để PT: (m + 1) x 2 + 5 x + m 2 -1 = 0 Có hai nghiệm trái dấu 3. Tìm giá trị của m để PT: (m + 1) x 2 -2(m - 1)x + m - 3 = 0 có 2 nghiệm cùng dấu. Dạng 5: Giải và biện luận phương trình ax 2 + bx + c = 0 Phương pháp giải: - Nếu a = 0 phương trình trở thành bx + c = 0 + Nếu b ≠ 0 thì phương trình có một nghiệm x = -c/b + Nếu b = 0 và c ≠ 0 thì phương trình vô nghiệm + Nếu b = 0 và c = 0 thì phương trình có vô số nghiệm - Nếu a ≠ 0 phương trình trở thành phương trình bậc hai ∆ = b 2 - 4ac + Nếu ∆ < 0 Phương trình vô nghiệm - b + Nếu ∆ = 0 Phương trình có nghiệm kép x 1 =x 2 = 2a + Nếu ∆ > 0 Phương trình có hai nghiệm phân biệt - b ± ∆ x 1, 2 = 2a Ví dụ: Giải và biện luận phương trình sau: 10 [...]... những bài học kinh nghiệm của đề tài mà bản thân đã rút ra trong quá trình giảng dạy Nội dung cơ bản của đề tài này là củng cố, khắc sâu thêm công thức nghiệm cho các em, qua đó hướng dẫn cách khai thác sử dụng linh hoạt công thức nghiệm vào giải toán Đặc biệt đã hình thành và rèn cho các em phương pháp giải một số dạng toán cơ bản về phương trình bậc 2 mà trong đó cách giải có sử dụng công thức nghiệm. .. HỌC KINH NGHIỆM Kiến thức sách giáo khoa là cơ bản và tổng quát song chưa thể “lột tả” hết các “ngõ ngách” kiến thức, vì thế người thầy phải biết khai thác từng đơn vị kiến thức để tạo chiều sâu cho bài giảng Người thầy tránh bắt học sinh giải nhiều bài tập nhưng ít hiệu quả làm cho học sinh coi việc giải toán là gánh nặng mà phải chú ý việc lựa chọn một hệ thống bài tập đa dạng, đầy đủ; đặc biệt hướng. .. bài tập đa dạng, đầy đủ; đặc biệt hướng dẫn cho các em về phương pháp giải từ đó kích thích được hứng thú học tập bộ môn toán 12 Khai thác sử dụng linh hoạt các đơn vị kiến thức cơ bản trong sách giáo khoa (mà phần trình bày trong bản sáng kiến kinh nghiệm này chỉ là một thí dụ) là một biện pháp thường xuyên tôi thực hiện nhiều năm nay, mỗi năm ở mỗi phần kiến thức hay ở từng dạng toán đều được bổ sung... kiến thức của học sinh tôi đã yêu cầu các em làm bài kiểm tra trong thời gian 20 phút với đề bài sau: 11 Bài 1: Cho PT: x2+ (2m + 1)x + m2+ 3m = 0 a) Giải PT với m = -2 b) Tìm m để PT luôn có 2 nghiệm phân biệt Bài 2: Tìm giá trị của m để PT: (5m 2 - 4m - 1)x2 + (3m -1)x - 2 = 0 có 2 nghiệm trái dấu Nhận xét bài làm của học sinh tôi thấy: Hầu hết các em đã có chuyển biến rõ rệt trong việc sử dụng linh... các em đã có chuyển biến rõ rệt trong việc sử dụng linh hoạt công thức nghiệm vào giải toán Chính vì vậy kết quả điểm của các em đạt được khá cao: Tỷ lệ điểm yếu và TB giảm, tỷ lệ điểm khá giỏi tăng lên rõ rệt (Tăng 35,2%) Để thấy rõ hiệu quả phương pháp sử dụng tôi đã lập bảng so sánh đối chứng sau: Thời điểm khảo sát Trước thực khi Số học sinh dự khảo sát SL TL % KẾT QUẢ TB Khá SL TL % SL TL % 37 6... phương trình có nghiệm kép x1 = x2= -1/3 + Nếu ∆’ > 0 ⇔ 4m + 1 > 0 ⇔ m > -1/4 ⇔ phương trình có nghiệm phân biệt: m + 1 ± 4m + 1 x1, 2= m-2 Vậy: + Nếu m = 2, PT đã cho có 1 nghiệm x = 1/3 + Nếu m < -1/4, PT đã cho vô nghiệm + Nếu m = -1/4, PT đã cho có nghiệm kép x1 = x2 = -1/3 + Nếu m > -1/4, m ≠ 2, PT đã cho có 2 nghiệm phân biệt m + 1 ± 4m + 1 x1, 2= m-2 Bài tập tự luyện Giải và biện luận các PT sau:...( m- 2)x2 - 2(m+1)x + m = 0 Hướng dẫn giải: * Nếu m - 2 = 0 hay m = 2 thì phương trình trở thành - 6x + 2 = 0 x = 1/3 Vậy phương trình có một nghiệm duy nhất x = 1/3 * Nếu m - 2 ≠ 0 hay m ≠ 2 Khi đó ta có: ∆’ = (m +1)2 - m (m-2) = 4m + 1 + Nếu ∆’ < 0 ⇔ 4m + 1 < 0 ⇔ m < -1/4⇔ phương trình vô nghiệm + Nếu ∆’ = 0 ⇔ 4m + 1 = 0 ⇔ m = -1/4 ⇔ phương trình có nghiệm kép x1 = x2= -1/3 + Nếu ∆’ >... thiết, không phải chỉ đối với trò mà còn rất có ý nghĩa đối với thầy Đây là một trong những hình thức tự bồi dưỡng chuyên môn nghiệp vụ cũng như tạo cơ hội học hỏi đồng nghiệp rất có giá trị Do đó tôi xin đề nghị với các cấp lãnh đạo ngành thường xuyên tổ chức các chuyên đề để mọi người có điều kiện học hỏi kinh nghiệm, đặc biệt những đề tài có giá trị thực tiễn cần đem phổ biến tới các trường để nâng cao... tôi thực hiện nhiều năm nay, mỗi năm ở mỗi phần kiến thức hay ở từng dạng toán đều được bổ sung thêm sâu sắc hơn, phong phú hơn trong cách khai thác Tôi nghĩ rằng đây cũng chính là phương pháp tự bồi dưỡng, rèn luyện, tự nghiên cứu khoa học để nâng cao vốn kiến thức cũng như trình độ chuyên môn của mỗi giáo viên, qua đó càng kích thích người thầy yêu nghề, mến trò, say mê nghiên cứu E NHỮNG ĐỀ NGHỊ... để giải một bài toán, điều đó có ý nghĩa to lớn trong việc vun đắp lòng say mê học toán của các em Mặc dù đã rất cố gắng khi thực hiện đề tài này nhưng tôi cảm thấy vẫn còn thiếu sót Vậy tôi mong được sự trao đổi, góp ý của các đồng nghiệp, các giáo viên có kinh nghiệm, Hội đồng khoa học trường THCS Xxx và Hội đồng Khoa học Phòng giáo dục - đào tạo để đề tài được hoàn thiện hơn và đạt hiệu quả cao . quát mở rộng cho từng phần kiến thức, đi sâu nghiên cứu, tìm tòi khai thác và hướng dẫn học sinh khai thác sử dụng linh hoạt từng phần kiến thức cơ bản đó áp dụng vào giải các dạng toán. Trên. với phương trình bậc hai đủ thì sử dụng công thức nghiệm tổng quát và công thức nghiệm rút gọn. - Đối với phương trình bậc 2 khuyết b, c ta không sử dụng công thức nghiệm của phương trình: + Đối. những lý do đó tôi suy nghĩ, trăn trở và mạnh dạn đưa ra phương pháp: Hướng dẫn học sinh 1 khai thác sử dụng công thức nghiệm , sau khi thực hiện thì thu được kết quả khá khả quan. II. PHẠM

Ngày đăng: 18/11/2014, 18:46

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w