1. Trang chủ
  2. » Giáo án - Bài giảng

ON TAP TOAN 9 THI VAO THPT (Có hiệu quả)

76 1K 32

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 76
Dung lượng 1,98 MB

Nội dung

Trờng THCS phơng khoan Giáo án BD Toán 9 Ngày dy: Ôn tập Căn bậc hai - Điều kiện tồn tại và hằng đẳng thức AA = 2 Liên hệ giữa phép nhân ; phép chia và phép khai phơng A- Lí thuyết : 1- Định nghĩa: CBH của một số không âm a là a và - a CBHSH của một số không âm a là a (x= a = ax x 2 0 ( Vớia 0 ) 2- Điều kiện tồn tại : A có nghĩa khi A 0 3- Hằng đẳng thức : AA = 2 = A A 4- Liên hệ giữa phép nhân ; phép chia và phép khai phơng . + Với A 0;0 B ta có BAAB .= +Với A 0;0 > B ta có B A B A = B- Bài tập áp dụng : Bài 1- Tính CBH và CBHSH của 16 ; 0,81 ; 25 4 Giải: CBH của 16 là 16 =4 và - 16 =-4 ; Còn CBHSH của 16 là 16 =4 CBHcủa 0,81 là 9,0 ; CBHSH của 0,81là 0,9 CBH của 25 4 là 5 2 ; CBHSH của 25 4 là 5 2 Bài 2- Tìm x để biểu thức sau có nghĩa : a; 12 +x c; 1 3 2 x e; 2 5 2 x b; x2 1 d; 32 2 +x Bài 3- Tính (Rút gọn ): a; 2 )21( c; 324625 ++ e; 12 + xx b; 22 )32()23( + d; 1 12 2 + x xx HD a; 2 )21( = 1221 = b; 22 )32()23( + = 32432323223 =+=+ c; 324625 ++ = 12321323)13()23( 22 +=++=++ d; 1 1 1 1 )1( 2 = = x x x x e; 12 + xx = 11)11( 2 +=+ xx Năm học: 2009 - 201 0 1 Trờng THCS phơng khoan Giáo án BD Toán 9 Bài 4- Giải PT: a; 3+2 5=x b; 32510 2 +=+ xxx c; 155 =+ xx HD: a; 3+2 5=x (Điều kiện x )0 2 235 ==x 1=x x=1(thoả mãn ) b; 32510 2 +=+ xxx 35 = xx (1) Điều kiện : x -3 (1) = = xx xx 35 35 1= x thoả mãn c; 155 =+ xx ĐK: x-5 0 5-x 0 Nên x=5 Với x=5 thì VT=0 vậy nên PT vô nghiệm Bài 5- Tính: a; 80.45 + 4,14.5,2 b; 52.13455 c; 144 25 150 6 23.2300 + Bài 6- Rút gọn : a; 22 )1( +aa với a >0 b; 66 64 128 16 ba ba (Vớia<0 ; b 0 ) HD: a; 22 )1( +aa với a >0 = )1(1 +=+ aaaa vì a>0 b; 66 64 128 16 ba ba (Vớia<0 ; b 0 ) = 22 1 8 1 128 16 266 64 a aba ba == Vì a <0 Bài 7: Rút gọn rồi tính giá trị của biểu thức với x= 0,5: 3 1 )3( )2( 2 2 4 + x x x x ( với x<3) Tại x=0,5 HD : = 3 54 3 144 3 1 3 )2( 2222 = ++ = + x x x xxx x x x x (Vì x<3) Thay x=0,5 ta có giá trị của biểu thức = 2,1 35,0 55,0.4 = bài 8. Tính a, A = ( ) 2 1 1 15 6 5 120 2 4 2 + c) ( ) ( ) 4 15 5 3 4 15 + b, B = ( ) 3 2 3 2 2 3 3 2 2 3 2 1 + + + + Một số bài tập tổng hợp bài tập 1. Tính a) 2 (1 2) e) E = 17 12 2 3 2 2 3 2 2 + + + b) 3 2 2 f) F = 4 7 4 7+ Năm học: 2009 - 20 10 2 Trờng THCS phơng khoan Giáo án BD Toán 9 c) 7 4 3+ g) G = 4 2 3 4 2 3 + d) 2 3 h) H = 21 6 6 21 6 6+ + bài tập 2 : Chứng minh rằng các biểu thức sau có giá trị là số nguyên a) A = ( ) ( ) 57 3 6 38 6 57 3 6 38 6+ + + + b) B = 2 3 5 13 48 6 2 + + + c) C = 5 3 29 12 5 bài tập 3: So sánh A và 2B với A = 10 24 40 60+ + + B = 2 3 6 8 16 2 3 4 + + + + + + bài tập 4: Thực hiện phép tính: 1) 2 5 125 80 605 + ; 2) 10 2 10 8 5 2 1 5 + + + ; 3) 15 216 33 12 6 + ; 4) 2 8 12 5 27 18 48 30 162 + + ; 5) 2 3 2 3 2 3 2 3 + + + ; 6) 16 1 4 2 3 6 3 27 75 ; 7) 4 3 2 27 6 75 3 5 + ; 8) ( ) 3 5. 3 5 10 2 + + 9) 8 3 2 25 12 4 192 + ; 10) ( ) 2 3 5 2 + ; 11) 3 5 3 5 + + ; 12) 4 10 2 5 4 10 2 5+ + + + ; 13) ( ) ( ) 5 2 6 49 20 6 5 2 6+ ; 14) 1 1 2 2 3 2 2 3 + + + ; 15) 6 4 2 6 4 2 2 6 4 2 2 6 4 2 + + + + ; 16) ( ) 2 5 2 8 5 2 5 4 + ; 17) 14 8 3 24 12 3 ; 18) 4 1 6 3 1 3 2 3 3 + + + ; 19) ( ) ( ) 3 3 2 1 2 1+ 20) 3 3 1 3 1 1 3 1 + + + + . Bài tập 5. Tìm giá trị các biểu thức sau bằng cách biến đổi, rút gọn thích hợp: a, 9 196 49 16 81 25 b, 81 34 2. 25 14 2. 16 1 3 c. 567 3,34.640 d, 22 511.8106,21 Bài tập 6. Phân tích các biểu thức sau thành các luỹ thừa bậc hai: a, 8+2 15 ; b, 10-2 21 ; c, 12- 140 d, 5 + 24 ; e, 14+6 5 ; g, 8- 28 Năm học: 2009 - 201 0 3 Trờng THCS phơng khoan Giáo án BD Toán 9 Bài tập 7. Phân tích thành thừa số các biểu thức sau: a, 1 + 1553 ++ b, 21151410 +++ c, 6141535 + d, 3 + 8318 ++ e, xy +y 1xx ++ g, 3+ x +9 -x Bài tập 8. Rút gọn các biểu thức sau: a, ( 10238 + )( 4,032 ) b, ( 0,2 3.)10( 2 + 2 2 )53( c, ( 714228 + ). 7 + 7 8 d, ( 15 +50 5 4503200 ) : 10 e, 2 422 )1(5)3(2)32( + g, ( 6:) 3 216 28 632 h, 57 1 :) 31 515 21 714 ( + i, 1027 1528625 + ++ Bài tập 9: Tính a) 6058012552 + b) 51 8 25 10210 + + + c) 6123321615 + d) 16230 275 4818 1282 + + e) 75 4 6 27 1 3 3 16 2 g) 32 32 32 32 + + + h) 210 )53(53 + + i) 75 5 3 3 4 6272 + k) 19241225238 + l) )25(32 + m) 5353 ++ n) +++ 52104 52104 + p) ( ) 452 5825 2 + Bài 2 Chứng minh ( )( ) 2113962562049625 =+ H ớng dẫn về nhà : Xem lại các dạng bài đã giải ở lớp. Làm thêm bài tập 16, 17, 18, 19, 30, 33, 34,38, 41, 42, 43, SBT. Năm học: 2009 - 20 10 4 Ngày tháng năm 2009 Tổ trởng CM (ký duyệt) Tạ Xuân Chiến Trờng THCS phơng khoan Giáo án BD Toán 9 Ngày dạy: Ôn tập về hệ thức lợng trong tam giác vuông . A Lí thuyết : Các hệ thức về cạnh và đờng cao trong tam giác vuông: 1- a 2 =b 2 +c 2 2- b 2 =a.b' ; c 2 =a.c' 3- h 2 = b'.c' 4- b.c=a.h 5- 222 111 cbh += C a B- Bài tập Bài 1. Tìm x, y,z trong mỗi hình sau : c) Bài 2: Cho tam giác ABC vuông ở A ;đờng cao AH a; Cho AH=16 cm; BH= 25 cm . Tính AB ; AC ; BC ;CH b; Cho AB =12m ; BH =6m . Tính AH ; AC ; BC ; CH .? Giải Sử dụng hình trên a; áp dụng định lí Pi Ta Go trong tam giác vuông AHB ta có: Năm học: 2009 - 201 0 A c h b c' b' B H C CC 5 x 9 25 y x 10 8 a) b) x y z 4 5 x 3cm H.1 5cm 4cm Trờng THCS phơng khoan Giáo án BD Toán 9 AB 2 = AH 2 + BH 2 = 15 2 +25 2 = 850 15,29850 = AB Trong tam giác vuông ABC Ta có : AH 2 = BH. CH CH = BH AH 2 = 9 25 15 2 = Vậy BC= BH + CH = 25 + 9 = 34 AC 2 = BC. CH = 34 . 9 Nên AC = 17,5 (cm) b; Xét tam giác vuông AHB ta có : AB 2 = AH 2 + HB 2 39,10612 2222 == HBABAH (m) Xét tam giác vuông ABC có : AH 2 = BH .CH 99,17 6 39,10 22 == BH AH HC (m) BC= BH +CH = 6 +17,99 =23,99 (m) Mặt khác :AB. AC = BC . AH 77,20 12 39;10.99,23. == AB AHBC AC (m) Bài 3: Cạnh huyền của tam giác vuông lớn hơn cạnh góc vuông là 1cm ; tổng hai cạnh góc vuông lớn hơn cạnh huyền 4 cm Hãy tính các cạnh của tam giác vuông này? Giải : Giả sử BC lớn hơn AC là 1 cm C Ta có: BC- AC= 1 Và (AC + AB)- BC =4 Tính : AB; AC ; BC . Từ (AC + AB)- BC =4 Suy ra AB- ( BC- AC )= 4 AB- 1 = 4 Vậy AB = 5 (cm) Nh vậy : =+ = 222 1 BCACAB ACBC +=+ += 222 )1(5 1 ACAC ACBC Giải ra ta có : AC = 12( cm) Và BC = 13 (cm) Bài 4: Cho tam giác vuông - Biết tỉ số hai cạnh góc vuông là 3: 4 ; cạnh huyền là 125 cm Tính độ dài các cạnh góc vuông và hình chiếu của các cạnh góc vuông trên cạnh huyền ? Giải: Ta sử dụng ngay hình trên Theo GT ta có : ACAB AC AB 4 3 4 3 == Năm học: 2009 - 20 10 6 A B H C Trờng THCS phơng khoan Giáo án BD Toán 9 Theo định lí Pi Ta Go ta có : AB 2 +AC 2 = BC 2 = 125 2 222 125) 4 3 ( =+ ACAC Giải ra : AC = 138,7 cm AB = 104 cm Mặt khác : AB 2 = BH . BC Nên BH = 53,86 125 104 22 == BC AB CH = BC -BH = 125 - 86,53 = 38,47 cm Bài 5 : Cho tam giác vuông tại A ; Cạnh AB = 6 cm ; AC = 8 cm . Các phân giác trong và ngoài của góc B cắt đờng AC lần lợt tại M và N Tính các đoạn thẳng AM và AN ? Bài giải:Theo định lí Pi Ta Go ta có : BC = 1086 2222 =+=+ ACAB cm Vì BM là phân giác ABC Nên ta có : MCAM AM BC BCAB MC AM BC AB + = + = Vậy AM = 3 106 8.6 = + cm Vì BN là phân giác ngoài của góc B ta có : 12= + == NA ACNA NA BC AB NC NA BC AB cm Cách khác: Xét tam giác vuông NBM ( Vì hai phân giác BM và BN vuông góc ) Ta có : AB 2 =AM. AN =>AN =AB 2 : AM = 6 2 : 3 = 12 cm Bài 6: Cho tam giác ABC ; Trung tuyến AM ; Đờng cao AH . Cho biết H nằm giữa B và M . AB=15 cm ; AH =12 cm; HC =16 cm a; Tính độ dài các đoạn thẳng BH ; AC b; Chứng tỏ tam giác ABC; Tính độ dài AM bằng cách tính sử dụng DL Pi Ta Go rồi dùng định lí trung tuyến ứng với cạnh huyền của tam giác vuông rồi so sánh kết quả Bài giải : A áp dụng định lí Pi Ta Go cho tam giác vuông AHB ta có: BH 2 = AB 2 - AH 2 =15 2 - 12 2 = 9 2 Vậy BH =9 cm Xét trong tam giác vuông AHC ta có : 15 12 AC 2 = AH 2 +HC 2 = 12 2 +16 2 =20 2 Năm học: 2009 - 201 0 N A M B C 7 C Trờng THCS phơng khoan Giáo án BD Toán 9 AC= 20 cm 16 b; BC= BH + HC = 9 +16 =25 B Vạy BC 2 = 25 2 = 625 H M AC 2 + AB 2 = 20 2 + 15 2 =225 Vậy BC 2 = AC 2 + AB 2 Vậy tam giác ABC vuông ở A Ta có MC =BM = 12,5 cm ;Nên HM= HC -CM = 16- 12,5 = 3,5 cm AM 2 = AH 2 +HM 2 = 12 2 + 3,5 2 =12,5 2 Vậy AM= 12,5 cm Thoã mãn định lí AM = BC : 2 =12,5 cm H ớng dẫn học ở nhà Xem kĩ các bài tập đã làm ở lớp Làm thêm các bài tập sau đây: Bài 1: Cho tam giác ABC vuông ở A ; từ trung điểm D của của AB vẽ DE vuông góc với BC . C/M : EC 2 - EB 2 = AC 2 Bài 2: Biết tỉ số giữa các cạnh góc vuông của một tam giác vuông là 5:6 ; cạnh huyền là 122 cm . Hãy tính độ dài hình chiếu của mỗi cạnh lên cạnh huyền ? Bài 3: Biết tỉ số hai cạnh góc vuông của một tam giác vuông là 3 : 7 ; Đờng cao ứng với cạnh huyền là 42 cm Tính độ dài hình chiếu của các cạnh góc vuông lên cạnh huyền ? bài 4: Làm các BT 1, 2, 3, 4, 5, 7, 9, 10, 11 SBT toán9. Ngày dạy : Ôn tập về các phép biến đổi căn thức bậc hai A- Kiến thức cơ bản: Các phép biến đổi căn bậc hai : 1.Đa thừa số ra ngoài dấu căn : - Với A 0 , B 0 Thì BABA = 2 - Với A<0 , B 0 Thì BABA = 2 Năm học: 2009 - 20 10 8 Ngày tháng năm 2009 Tổ trởng CM (ký duyệt) Tạ Xuân Chiến Trờng THCS phơng khoan Giáo án BD Toán 9 2.Đa thừa số vào trong dấu căn : Với A 0 , B 0 Thì A BAB 2 = Với A 0 , B 0 Thì A BAB 2 = 3.Khữ mẩu của biểu thức lấy căn : Với AB 0;0 B Thì B AB B AB B A == 2 4.Trục căn thức ở mẫu: Với B>0 thì B BA B A = Với B 0; A 2 B thì BA BAC BA C + = )( Với A 0 ; B 0 và A B THì : BA BAC BA C + = )( B- Bài tập : Bài 1) Chứng minh : a, 25549 = VT= VP=== 25255)25( 2 (ĐCC/M) b, Chứng minh : yx xy yxxyyx = ))(( Với x>0; y>0 BĐVT= VPyx yx yxyx yx yxyxyxyxyx == = + . )(. . . (ĐCC/m) c; Chứng minh : x+ 2 2 )22(42 += xx Với x 2 BĐVP= 2+ x-2 + 2 42 x = x +2 42 x =VT (ĐCC/m) Bài 2: Rút gọn : a;(2 603)53 + = 2.3+ 15615215615.415 =+= b; 2 035)628(352.3352352.4 34.5335232.40248537521240 === = c; (2 yxyx yxyxyxyxyx 26 2346)23)( = +=+ d, 422422 ++ xxxx Với x 2 Với 40242 xx ta có Biểu thức = 422242242 =++ xxx Với 420242 < xx Biểu thức = 4422242 =++ xx Bài 3:Tìm x a; )(493525 )0:(3525 2 TMxx xDKx == = c; 242)4( 2168 2 2 +=+= +=+ xxxx xxx d; 5 4 2 4 2 22 = + + xxxx (ĐK: x 2 Năm học: 2009 - 201 0 9 Trờng THCS phơng khoan Giáo án BD Toán 9 b; )(6033 )(303 0)33(3 0333.3 )3:(0339 2 tmx tmxx xx xxx xDKxx =++ ==+ =+ =+ = vậy x =3 hoặc x = 6 hoặc x<2) Bài 4: Cho biểu thức : A = x x xx + + 1 22 1 22 1 a; Tìm TXĐ rồi rút gọn biểu thức A b; Tính giá trị của A với x =3 c; Tìm giá trị của x để 2 1 =A Bài 5 : Tính 9101 1 10099 1 32 1 21 10099 1 9998 1 32 1 21 1 =+= ++ + = + + + ++ + + + Bài 6. Chứng minh các đẳng thức sau: a, ba ba 1 : ab abba = + ( a, b > 0 và a b ) b, ( 1+ a1) 1a aa 1)( 1a aa = + (a > 0 và a 1);c, ( a a1 aa1 + )( a1 a1 ) 2 =1 (a > 0 và a 1) d, a bab2a ba . b ba 22 42 2 = ++ + (a+b>0, b 0) Bài 7. Rút gọn rồi tính giá trị của các biểu thức sau: a, 2 a4a129a9 ++ với a = -9 ; b, 1 + 4m4m 2m m3 2 + với m<2 c, a4a25a101 2 + với a= 2 ; d, 4x- 1x6x9 2 ++ với x=- 3 e, 6x 2 -x 6 +1 với x = 2 3 3 2 + B i 8: Rút gọn Các biểu thức sau: 42 44 2 + = x xx A 144 1 : 21 1 14 5 21 2 1 22 ++ + = xx x x x x x B xy y yx yx yx yx C + + = 2 2222 xxxxx D + + + + = 1 1 1 1 1 1 : 1 1 1 1 + + = 1 2 1 1 : 1 1 x xxxx x E a x xa a x xa F 22 22 + + + + = Gợi ý: Khi làm các bài toán này cần: - Đặt ĐKXĐ? Năm học: 2009 - 20 10 10 [...]... tại A Suy ra . 39, 10612 2222 == HBABAH (m) Xét tam giác vuông ABC có : AH 2 = BH .CH 99 ,17 6 39, 10 22 == BH AH HC (m) BC= BH +CH = 6 +17 ,99 =23 ,99 (m) Mặt khác :AB. AC = BC . AH 77,20 12 39; 10 .99 ,23. == AB AHBC AC . b; Tính giá trị của A với x =3 c; Tìm giá trị của x để 2 1 =A Bài 5 : Tính 91 01 1 10 099 1 32 1 21 10 099 1 99 98 1 32 1 21 1 =+= ++ + = + + + ++ + + + Bài 6. Chứng minh các đẳng thức. 3 2744 b; - 2 1 và - 3 9 1 - 2 1 = 3 8 1 ; - 3 9 1 = 3 9 1 Vì 9 1 8 1 < Nên 3 8 1 < 3 9 1 Hay - 2 1 <- 3 9 1 Bài 6 : Rút gọn biểu thức : Năm học: 20 09 - 201 0 15 Trờng THCS

Ngày đăng: 05/07/2014, 07:00

TỪ KHÓA LIÊN QUAN

w