1. Trang chủ
  2. » Luận Văn - Báo Cáo

ĐỀ CƯƠNG MÔN HỌC GIẢI TÍCH 2 (CALCULUS 2)

7 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Giải Tích 2 (Calculus 2)
Tác giả Nguyễn Đình Huy, Ngô Thu Lương, Nguyễn Quốc Lân, Nguyễn Bá Thi, Trần Lưu Cường, Đậu Thế Cấp, Đặng Văn Vinh, Trần Quốc Khánh, Nguyễn Xuân Anh, Trần Ngọc Diễm, Nguyễn Xuân Mỹ
Trường học Vietnam National University – HCMC
Chuyên ngành Calculus
Thể loại Course Outline
Năm xuất bản 2009
Thành phố Ho Chi Minh City
Định dạng
Số trang 7
Dung lượng 619,52 KB

Nội dung

Kinh Tế - Quản Lý - Công Nghệ Thông Tin, it, phầm mềm, website, web, mobile app, trí tuệ nhân tạo, blockchain, AI, machine learning - Công nghệ thông tin 17 Đại Học Quốc Gia TP.HCM Trường Đại Học Bách Khoa Khoa Khoa học ứng dụng Vietnam National University – HCMC Ho Chi Minh City University of Technology Faculty of Applied Science Đề cương môn học GIẢI TÍCH 2 (Calculus 2) Số tín chỉ 4 MSMH 124032 Số tiết Tổng: 90 LT: 45 TH: 0 TN: 0 BTLTL: 45 Môn ĐA, TT, LV Tỉ lệ đánh giá BT: TN: KT: 20 BTLTL: 40 Thi: 40 Hình thức đánh giá - Kiểm tra: trắc nghiệm, 45 phút - Thi: tự luận, 90 phút Báo cáo bài tập lớn Môn tiên quyết 0 Môn học trước Giải tích 1 Môn song hành 0 CTĐT ngành Đề cương được áp dụng cho tất cả các ngành của khối Đại học Kỹ thuật. Trình độ đào tạo Đại học Cấp độ môn học 1 Ghi chú khác 0 1. Mục tiêu của môn học: - Nhằm trình bày khá đầy đủ về nội dung cơ bản của Toán cao cấp. Dùng cho các ngành Khoa học kỹ thuật. Phần nào đó giúp cho các Sinh viên khối kỹ thuật tiếp thu các vấn đề một cách nhẹ nhàng và trang bị những kỹ năng cơ bản cho người học có khả năng tự nghiên cứu. Aims Present the basic concept of Advanced Mathematics which is used for students of technology. Help students to comprehend problems of technology easily and provide students with necessary skills of self-studying. 2. Nội dung tóm tắt môn học: - Môn giải tích 2 bao gồm các kiến thức cơ bản về vi tích phân hàm nhiều biến, tích phân đường mặt, lý thuyết trừơng và chuỗi. - Chương trình soạn có tính đến đối tượng chủ yếu là các kỹ sư tưong lai nên chú ý vào các công thức ứng dụng và không đặt nặng các vấn đề lý thuyết toán học. Vì thời gian lên lớp có hạn nên Sinh viên cần nhiều thời gian tìm hiểu thêm và chuẩn bị bài ở nhà. 27 Course outline: - Calculus 2 includes caluclus of several variables such as differentiation and integration of functions of several variables, line integrals, surface integral, field theory and series theory. - Since the curriculum is designed for future engineers,iit only focus on applications of mathematical formula, not theoretical mathematics . Students need to spend much time on self- learning at home because of limited time in class. 3. Tài liệu học tập: 1 Giáo trình chính: GT GIAI TICH II. Nguyễn Đình Huy,Ngô Thu Lương, Nguyễn Quốc Lân, Nguyễn Bá Thi, Trân Lưu Cường, Đậu Thế Cấp, Đặng Văn Vinh, Trần Quốc Khánh , Nguyễn Xuân Anh ,Trần Ngọc Diễm , Nguyễn Xuân Mỹ .– NXBDHQG 2009 2 Lý thuyết chuỗi và phương trình vi phân . Nguyễn Đình Huy, Nguyễn Quốc Lân, Nguyễn Bá Thi, Trần Lưu Cường, Đậu Thế Cấp, Huỳnh Bá Lân – NXB GD 2006 3 Sách tham khảo: Giải tích hàm nhiều biến .. Nguyễn Đình Huy, Nguyễn Quốc Lân, Nguyễn Bá Thi, Trần Lưu Cường, Đậu Thế Cấp, Huỳnh Bá Lân – NXB GD 2006 4.Các hiểu biết, các kỹ năng cần đạt được sau khi học môn học STT Chuẩn đầu ra môn học CDIO L.O.1 Hiểu được những khái niệm cơ bản, nắm vững nội dung các phương pháp 1.1 L.O.2 Vận dụng các phương pháp trong các bài toán kỹ thuật cụ thể. 1.1, 2.1 L.O.3 Có khả năng phân tích, lựa chọn phương pháp cụ thể cho bài toán cụ thể 1.1, 2.1 L.O.4 Có khả năng sử dụng phần mềm Matlab để giải quyết những bài toán trong kỹ thuật. 1.1 L.O.5 Có khả năng tìm kiếm và học hỏi kiến thức mới bên ngoài lớp học. 1.1 L.O.6 Có khả năng làm việc như là thành viên của nhóm một cách hiệu quả. 3.1, 3.2 STT Course learning outcomes CDIO L.O.1 Understanding basic concepts, mastering the content of methods. 1.1 L.O.2 Capable of applying mathematical methods on specific practical problems. 1.1, 2.1 L.O.3 Capable of analyzing and choosing appropriate methods for specific problems. 1.1, 2.1 L.O.4 Capable of using Matlab to solve problems arisen in technology. 1.1 L.O.5 Capable of learning new knowledge outside of the class. 1.1 L.O.6 Capable of working effectively as a member of a group. 3.1, 3.2 5.Hướng dẫn cách học - chi tiết cách đánh giá môn học: Sử dụng sách giáo khoa như yêu cầu. Lưu ý các sách giáo khoa dùng cho các trường khối Tổng hợp, Sư phạm sẽ không thật sự thích hợp. Yêu cầu khác: Thường xuyên tham khảo vào trang web Bộ môn để cập nhật bài giảng lý thuyết và bài tập mẫu. Phần mềm tính toán hình thức Matlab được khuyến khích sử dụng. Tham dự giờ giảng trên lớp + làm bài tập: Bắt buộc. Nếu vắng mặt quá phân nửa số buổi bài tập trong học kỳ (quá 7 buổihọc kỳ): Giáo viên giờ bài tập có quyền đề nghị cấm thi. 37 Cách đánh giá môn học: - Giữa kỳ: 20 - Cuối kỳ: 40 - Bài tập lớn: 40 Learning Strategies Assessment Scheme: Use textbooks as required. Note that, textbooks for the University of Science or the University of Education may not suitable. Another requirement: regularly access to the website of the department of Applied Mathematics to get updated lectures and exercises. Attend class and do exercises: required. If a student misses more than half of exercise sessions (more than 7 sessions semester), heshe may be banned for the final exam by the instructor of exercise sessions. Assessment Scheme: - Mid-term exam: 20 - Assignment: 40 - Final exam: 40 6. Dự kiến danh sách Cán bộ tham gia giảng dạy:  TS. GVC. Nguyễn Quốc Lân Khoa: Khoa Học Ứng Dụng  ThS. GVC. Ngô Thu Lương  ThS. GV. Nguyễn Xuân Mỹ  ThS. GV. Nguyễn Thị Xuân Anh  TS. GV. Trần Ngọc Diễm  TS. GVC. Trần Quốc Khánh  PGS. TS. Nguyễn Đình Huy  TS. GV. Đặng Văn Vinh  TS. GVC. Trần Lưu Cường.  TS. GVC. Nguyễn Bá Thi  ThS. GVC. Trịnh Quốc Lương  TS. GVC. Huỳnh Bá Lân  ThS. Nguyễn Hồng Lộc  TS. Lê Xuân Đại  ThS. Hoàng Hải Hà  ThS. Phan Thị Khánh Vân  TS. Nguyễn Tiến Dũng  ThS. Nguyễn Hữu Hiệp  ThS. Phùng Trọng Thực 7. Nội dung chi tiết: Tuần Nội dung Chuẩn đầu ra chi tiết Hoạt động dạy và học Phương pháp đánh giá 1 Chương 1: Hàm nhiều biến 1.1.Định nghĩa hàm nhiều biến. Đạo hàm riêng, vi phân hàm nhiều biến . Đạo hàm riêng, vi phân hàm hợp Bài tập L.O.1 Nắm vững cách tích đạo hàm riêng,hàm ẩn, hàm hợp, đạo hàm theo hướng. Cách tìm cực trị tự do, cực trị có điều kiện L.O.2 Xác định mối liên hệ tương đồng giữa hàm 1 biến và Giảng viên: Định nghĩa hàm nhiều biến, đạo hàm riêng, vi phân, đạo hàm hàm hợp, hàm ẩn, đạo hàm theo hướng. Chứng minh công thúc Taylor cho hàm nhiều biến, định lý tìm cực trị tự do, cực trị có điều kiện. Bài tập lớn, kiểm tra, thi cuối kỳ 2 1.2. Đạo hàm hàm ẩn. Đạo hàm theo hướng và ứng 47 dụng. Công thức Taylor. Cực trị tự do. Bài tập hàm nhiều biến. Sinh viên:Hiểu được đạo hàm, vi phân của hàm nhiều biến, xem xét sự tương quan giữa hàm nhiều biến và hàm một biến. Sử dụng công thức Taylor hàm một biến để tìm khai triển Taylor hàm nhiều biến. Thực hành tìm cực trị tự do của hàm 2 biến, giá trị nhỏ nhất,lớn nhất của hàm liên tục trên miền đóng và bị chặn. 3 1.3. Cực trị có điều kiện. Giá trị lớn nhất, bé nhất của hàm liên tục trên miền đóng và bị chặn. Bài tập 4 Chương 2: Tích phân hàm nhiều biến 2.1.Tích phân kép Bài tập L.O.1 Nắm vững cách tính tích phân bội, các phương pháp đổi biến đưa tích phân bội về tích phân thông thường. L.O.2, L.O.3 Ứng dụng tích phân bội trong các bài toán kỹ thuật. Giảng viên: Chứng minh định lý Fubini, cho các ví dụ kỹ thuật về áp dụng tích phân kép, bội 3 để tìm diện tích, thể tích vật thể. Sinh viên: Thực hành các phương pháp đổi biến: tọa độ cực, trụ, cầu. Áp dụng tính diện tích, thể tích trong các bài toán kỹ thuật cụ thể. Bài tập lớn, kiểm tra, thi cuối kỳ 5 2.2. Tích phân kép trong toạ độ cực. Ứng dụng hình học và cơ học. Bài t...

Trang 1

Đại Học Quốc Gia TP.HCM

Trường Đại Học Bách Khoa

Khoa Khoa học ứng dụng

Vietnam National University – HCMC

Ho Chi Minh City University of Technology

Faculty of Applied Science

Đề cương môn học

GIẢI TÍCH 2 (Calculus 2)

Môn ĐA, TT, LV

Hình thức đánh giá - Kiểm tra: trắc nghiệm, 45 phút

- Thi: tự luận, 90 phút Báo cáo bài tập lớn

Môn tiên quyết 0

Môn học trước Giải tích 1

CTĐT ngành Đề cương được áp dụng cho tất cả các ngành của khối Đại học Kỹ thuật

Trình độ đào tạo Đại học

Cấp độ môn học 1

1 Mục tiêu của môn học:

- Nhằm trình bày khá đầy đủ về nội dung cơ bản của Toán cao cấp Dùng cho các ngành

Khoa học kỹ thuật Phần nào đó giúp cho các Sinh viên khối kỹ thuật tiếp thu các vấn đề một cách nhẹ nhàng và trang bị những kỹ năng cơ bản cho người học có khả năng tự nghiên cứu

Aims

Present the basic concept of Advanced Mathematics which is used for students of technology Help students to comprehend problems of technology easily and provide students with necessary skills of self-studying

2 Nội dung tóm tắt môn học:

- Môn giải tích 2 bao gồm các kiến thức cơ bản về vi tích phân hàm nhiều biến, tích phân đường mặt, lý thuyết trừơng và chuỗi

- Chương trình soạn có tính đến đối tượng chủ yếu là các kỹ sư tưong lai nên chú ý vào các công thức ứng dụng và không đặt nặng các vấn đề lý thuyết toán học Vì thời gian lên lớp có hạn nên Sinh viên cần nhiều thời gian tìm hiểu thêm và chuẩn bị bài ở nhà

Trang 2

Course outline:

- Calculus 2 includes caluclus of several variables such as differentiation and integration of functions of several variables, line integrals, surface integral, field theory and series theory

- Since the curriculum is designed for future engineers,iit only focus on applications of mathematical formula, not theoretical mathematics Students need to spend much time on self-learning at home because of limited time in class

3 Tài liệu học tập :

[1] Giáo trình chính: GT GIAI TICH II Nguyễn Đình Huy,Ngô Thu Lương, Nguyễn Quốc Lân, Nguyễn Bá Thi, Trân Lưu Cường, Đậu Thế Cấp, Đặng Văn Vinh, Trần Quốc Khánh , Nguyễn Xuân Anh ,Trần Ngọc Diễm , Nguyễn Xuân Mỹ – NXBDHQG 2009

[2] Lý thuyết chuỗi và phương trình vi phân Nguyễn Đình Huy, Nguyễn Quốc Lân, Nguyễn Bá Thi, Trần Lưu Cường, Đậu Thế Cấp, Huỳnh Bá Lân – NXB GD 2006

[3] Sách tham khảo: Giải tích hàm nhiều biến Nguyễn Đình Huy, Nguyễn Quốc Lân, Nguyễn Bá Thi, Trần Lưu Cường, Đậu Thế Cấp, Huỳnh Bá Lân – NXB GD 2006

4 Các hiểu biết, các kỹ năng cần đạt được sau khi học môn học

L.O.1 Hiểu được những khái niệm cơ bản, nắm vững nội dung các phương

pháp

1.1

L.O.2 Vận dụng các phương pháp trong các bài toán kỹ thuật cụ thể 1.1, 2.1 L.O.3 Có khả năng phân tích, lựa chọn phương pháp cụ thể cho bài toán cụ

thể

1.1, 2.1

L.O.4 Có khả năng sử dụng phần mềm Matlab để giải quyết những bài toán

trong kỹ thuật

1.1

L.O.5 Có khả năng tìm kiếm và học hỏi kiến thức mới bên ngoài lớp học 1.1

L.O.6 Có khả năng làm việc như là thành viên của nhóm một cách hiệu quả 3.1, 3.2

L.O.1 Understanding basic concepts, mastering the content of methods 1.1

L.O.2 Capable of applying mathematical methods on specific practical

problems

1.1, 2.1

L.O.3 Capable of analyzing and choosing appropriate methods for specific

problems

1.1, 2.1

L.O.4 Capable of using Matlab to solve problems arisen in technology 1.1

5.Hướng dẫn cách học - chi tiết cách đánh giá môn học:

Sử dụng sách giáo khoa như yêu cầu Lưu ý các sách giáo khoa dùng cho các trường khối Tổng hợp,

Sư phạm sẽ không thật sự thích hợp

Yêu cầu khác: Thường xuyên tham khảo vào trang web

Bộ môn để cập nhật bài giảng lý thuyết và bài tập mẫu Phần mềm tính toán hình thức Matlab được khuyến khích sử dụng

Tham dự giờ giảng trên lớp + làm bài tập: Bắt buộc Nếu vắng mặt quá phân nửa số buổi bài tập trong học kỳ (quá 7 buổi/học kỳ): Giáo viên giờ bài tập có quyền đề nghị cấm thi

Trang 3

Cách đánh giá môn học:

- Giữa kỳ: 20%

- Cuối kỳ: 40%

- Bài tập lớn: 40%

Learning Strategies &Assessment Scheme:

Use textbooks as required Note that, textbooks for the University of Science or the University of Education may not suitable

Another requirement: regularly access to the website of the department of Applied Mathematics to get updated lectures and exercises

Attend class and do exercises: required If a student misses more than half of exercise sessions (more than 7 sessions/ semester), he/she may be banned for the final exam by the instructor of exercise sessions

Assessment Scheme:

- Mid-term exam: 20%

- Assignment: 40%

- Final exam: 40%

6 Dự kiến danh sách Cán bộ tham gia giảng dạy:

 ThS GVC Ngô Thu Lương

 ThS GV Nguyễn Xuân Mỹ

 ThS GV Nguyễn Thị Xuân Anh

 TS GV Trần Ngọc Diễm

 TS GVC Trần Quốc Khánh

 PGS TS Nguyễn Đình Huy

 TS GV Đặng Văn Vinh

 TS GVC Trần Lưu Cường

 TS GVC Nguyễn Bá Thi

 ThS GVC Trịnh Quốc Lương

 TS GVC Huỳnh Bá Lân

 ThS Nguyễn Hồng Lộc

 TS Lê Xuân Đại

 ThS Hoàng Hải Hà

 ThS Phan Thị Khánh Vân

 TS Nguyễn Tiến Dũng

 ThS Nguyễn Hữu Hiệp

 ThS Phùng Trọng Thực

7 Nội dung chi tiết:

đánh giá

1 Chương 1: Hàm nhiều

biến

1.1.Định nghĩa hàm nhiều

biến Đạo hàm riêng, vi

phân hàm nhiều biến Đạo

hàm riêng, vi phân hàm hợp

Bài tập

L.O.1 Nắm vững cách tích đạo hàm riêng,hàm

ẩn, hàm hợp, đạo hàm theo hướng Cách tìm cực trị tự do, cực trị có điều kiện

L.O.2 Xác định mối liên hệ tương đồng giữa hàm 1 biến và

Giảng viên: Định nghĩa hàm nhiều biến, đạo hàm riêng, vi phân, đạo hàm hàm hợp, hàm ẩn, đạo hàm theo hướng Chứng minh công thúc Taylor cho hàm nhiều biến, định lý tìm cực trị tự do, cực trị có điều kiện

Bài tập lớn, kiểm tra, thi cuối kỳ

2 1.2 Đạo hàm hàm ẩn Đạo

hàm theo hướng và ứng

Trang 4

dụng Công thức Taylor

Cực trị tự do

Bài tập

hàm nhiều biến Sinh viên:Hiểu được đạo

hàm, vi phân của hàm nhiều biến, xem xét sự tương quan giữa hàm nhiều biến

và hàm một biến Sử dụng công thức Taylor hàm một biến để tìm khai triển Taylor hàm nhiều biến

Thực hành tìm cực trị tự do của hàm 2 biến, giá trị nhỏ nhất,lớn nhất của hàm liên tục trên miền đóng và bị chặn

3 1.3 Cực trị có điều kiện

Giá trị lớn nhất, bé nhất của

hàm liên tục trên miền đóng

và bị chặn

Bài tập

4 Chương 2: Tích phân

hàm nhiều biến

2.1.Tích phân kép

Bài tập

L.O.1 Nắm vững cách tính tích phân bội, các phương pháp đổi biến đưa tích phân bội về tích phân thông thường

L.O.2, L.O.3 Ứng dụng tích phân bội trong các bài toán kỹ thuật

Giảng viên: Chứng minh định lý Fubini, cho các ví

dụ kỹ thuật về áp dụng tích phân kép, bội 3 để tìm diện tích, thể tích vật thể

Sinh viên: Thực hành các phương pháp đổi biến: tọa

độ cực, trụ, cầu Áp dụng tính diện tích, thể tích trong các bài toán kỹ thuật cụ thể

Bài tập lớn, kiểm tra, thi cuối kỳ

5 2.2 Tích phân kép trong

toạ độ cực Ứng dụng hình

học và cơ học

Bài tập

6 2.3 Tích phân bội 3

Bài tập

7 2.2 Tích phân kép trong

toạ độ cực Ứng dụng hình

học và cơ học

Bài tập

8 Chương 3: Tích phân

đường, tích phân mặt

3.1 Tích phân đường loại

1 Hàm véc tơ và trường

véc tơ Tích phân đường

loại 2 Ứng dụng hình học

và cơ học

Bài tập

L.O.1 Nắm vững cách tính tích phân đường, tích phân mặt, các phương pháp đưa tích phân đường, tích phân mặt về tích phân đã

biết

L.O.2 Ứng dụng hình học và cơ học

Giảng viên: Xây dựng công thức tích phân đường, tích phân mặt từ các bài toán vật

lý Chứng minh các định lý tính tích phân đường, tích phân mặt Ví dụ tích phân đường, tích phân mặt trong các vấn đề kỹ thuật

Sinh viên: Thực hành cách tính tích phân mặt, tích phân đường, ứng dụng tích phân đường, tích phân mặt trong các bài toán kỹ thuật, cho ví dụ về tích phân đường, mặt trong kỹ thuật (cơ học, điện, …)

Bài tập lớn, kiểm tra, thi cuối kỳ

9 3.2 Công thức Green

Điều kiện tích phân đường

không phụ thuộc đường đi

Bài tập

10 3.3 Tích phân mặt Công

thức Gauss, Stokes ghi ở

dạng vectơ Ứng dụng hình

học và cơ học

Bài tập

11 Chương 4: Chuỗi

4.1.Khái niệm Chuỗi số

không âm

Bài tập

L.O.1 Nắm vững các khái niệm về chuỗi, các phương pháp khảo sát

sự hội tụ của chuỗi số, cách tính tổng

L.O.2, L.O.3 Ứng dụng chuỗi trong các bài toán kỹ thuật

Giảng viên: Định nghĩa chuỗi số không âm, chuỗi

số đan dấu, chuỗi số có dấu bất kỳ Chứng minh các định lý về sự hội tụ của chuỗi Ứng dụng tính tổng chuỗi trong các bài toán về xác suất

Sinh viên: Thực hành về khảo sát sự hội tụ của chuỗi

số, tìm miền hội tụ của chuỗi lũy thừa Áp dụng chuỗi lũy thừa để tính tổng của chuỗi

Bài tập lớn, kiểm tra, thi cuối kỳ

12 Chuỗi số không âm (tt)

Chuỗi số có dấu bất kỳ

Bài tập

13 4.2 Chuỗi số đan dấu

Chuỗi luỹ thừa

Bài tập

14 4.3 Chuỗi Taylor Ứng

dụng

Bài tập

Yêu cầu đ/v sinh viên: Tự

học, tự làm bài tập sau mỗi

tuần khoảng 4h

L.O.5 Có khả năng tìm kiếm và học hỏi kiến thức mới bên ngoài lớp học

Bài tập lớn: Sử dụng phần L.O.4 - L.O.6 Có khả

Trang 5

mềm Matlab theo sự hướng

dẫn của giáo viên năng sử dụng phần mềm Matlab và làm

việc nhóm

Nội dung giới hạn cho

kiểm tra giữa kỳ: Từ đầu

đến hết chương 3 (thi theo

hình thức trắc nghiệm)

Nội dung thi cuối kỳ: Tất

cả toàn bộ chương trình

Thi theo hình thức tự luận

outcomes

Teaching & learning activities

Assessment

variables functions

1.1.Definition of functions

of several variables Partial

differentiation functions

of several variables Partial

differentiation of

composite functions

Exercise

L.O.1 Using methods

to calculate partial

functions including composite functions and implicit functions

Find unconditional extreme values amd conditional extreme value

L.O.2 Identify the relationship between one variable functions and several variables functions

Teacher:

Indtroduce functions of several variables, partial

differentiation for functions

of several variables including composite functions, implicit functions

Prove Taylor's formula for functions of several variables, theorems about finding unconditional extreme values and conditional extreme

values

Student:

Understand the concept of

differentiation of functions of several variables Realize the relationship between functions of one variable and functions of several variables

Use Taylor's formula for functions of one variable to find Taylor series for functions of several variables

Practice: find unconditional extreme values of functions

of two variables find absolute maximum and absolute minimum of fucntions on closed bounded domains

Assignments, Tests, Final exam

2 1.2 Derivatives of implicit

functions Taylor's

formula Unconditional

extremums

Exercise

3 1.3.Conditional

extremums Absolute

maximum and absolute

minimum of functions on

closed bounded domains

Exercise

4 Chapter 2: Multiple

integrals

2.1.Double integrals

Exercise

L.O.1 Using methods

to calculate multiple integrals, using the change of variable method to transform multiple integrals into regular one-variable integrals

Applications of multiple integrals in practial problems

Teacher:

Prove Fubini’s theorem, give examples in technology where double and triple integrals are used to find area

and volume of objects

Student: Practice on the

change of variable method

Apply them to calculate area amd volume of objects arise

in practical problems

Assignments, tests, final exam

5 2.2 Double integrals in

polar coordinates

Their applications in

geometry and mechanics

Exercise

6 2.3 Triple integrals

Exercise

7 2.4 Triple integrals in

cylindrical coordinates and

spherical coordinates

Their applications in

geometry and mechanics

Exercise

Trang 6

8 Chapter 3: Line integral,

Surface integral

3.1 Line integral of type 1

and type 2

Exercise

L.O.1 Understand how

to calculate line integrals and surface integrals, and how to transform line and surface integrals into familiar one-variable integrals

L.O.2 Be able to apply multiple integrals on practical problems

Teacher:

Derive the concept of line and surface integrals from physical problems

Prove theorems about line and surface integrals

Give examples of line and surface integral arise in

technology

Student:

Pratice on calculating line and surface integrals, apply them

on practical problems

Assignments, tests, final exam

9 3.2 Green’s theorem

Line integral is not

depended on the cuvre

Exercise

10 3.3 Surface integral

Vector field Gauss’s

formula, Stokes’s formula

in vector form Example to

apply the formulas

Exercise

11 Chapter 4: Series

4.1.Definition

Nonnegative series

Exercise

L.O.1 Understand the concepts of series, and the methods to test the convergence of series,

to calculate the sums

practical problems.

Teacher:

Introduce positive series, alternating series, arbitrary series Prove theorems about the convergence of series

Applications of calculating sums of series in

probability

Student: Practice on testing

the convergence of series, finding the intervals of convergence of power series

Use power series to calculate sums of series

Assignments, tests, final exam

12 Nonnegative series (con't)

Arbitrary series

Exercise

13 4.2 Alternating series

Power series

Exercise

14 4.3 Taylor series and its

applications

Exercise

Requirement for students:

Self study, do homework

about 4 hours per week

L.O.5 Capable of

knowledge outside of the class

Matlab under guidance of

teacher

L.O.4, L.O.6 Capable

of using Matlab

Capable of working effectively as a member of a group

Content of mid-term test:

From beginning to end of

chapter 3(tests)

Content of final exam:

All content of the course

(essay contest)

Trang 7

8 Thông tin liên hệ

Bộ môn/Khoa phụ trách Bộ môn:Toán UD - Khoa:KHUD

Giảng viên phụ trách PGS.TS Nguyễn Đình Huy

TS Nguyễn Bá Thi TS.Nguyễn Quốc Lân

Tp Hồ Chí Minh, ngày 5 tháng 4 năm 2014

TS Huỳnh Quang Linh PGS.TS Nguyễn Đình Huy PGS.TS Nguyễn Đình Huy

TS Nguyễn Bá Thi

TS.Nguyễn Quốc Lân

Ngày đăng: 27/05/2024, 15:45

w