1. Trang chủ
  2. » Trung học cơ sở - phổ thông

Hướng dẫn học sinh giải bài toán bằng cách lập phương trình

24 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Hướng Dẫn Học Sinh Giải Bài Toán Bằng Cách Lập Phương Trình
Trường học Trường Trung Học Cơ Sở
Chuyên ngành Toán
Thể loại Bài Giảng
Định dạng
Số trang 24
Dung lượng 279 KB

Nội dung

Môn Toán có một vai trò rất quan trọng trong trường trung học cơ sở. Do đó việc giải các bài toán bằng cách lập phương trình đối với học sinh trung học cơ sở là một việc làm mới mẻ. Đề bài cho không phải là những phương trình có sẵn mà là một đoạn văn mô tả mối quan hệ giữa các đại lượng, học sinh phải chuyển đổi được mối quan hệ giữa các đại lượng được mô tả bằng lời văn sang mối quan hệ toán học. Hơn nữa, nội dung của các bài toán này, hầu hết đều gắn bó với các hoạt động thực tế của con người, xã hội hoặc tự nhiên,… Cho nên trong quá trình giải học sinh thường quên, không quan tâm đến yếu tố thực tiễn dẫn đến đáp số vô lý. Một đặc thù riêng nữa là loại toán này là hầu hết các bài toán đều được gắn liền với nội dung thực tế. Chính vì vậy mà việc chọn ẩn số thường là những số liệu có liên quan đến thực tế. Do đó khi giải toán học sinh thường mắc sai lầm và thoát ly thực tế. Từ những lý do đó mà học sinh rất sợ giải loại toán này. Bên cạnh, học sinh chưa biết phân loại toán, chưa khái quát được cách giải cho mỗi dạng. Kỹ năng phân tích tổng hợp của học sinh còn chậm, cách chọn ẩn số, mối liên hệ giữa các dữ liệu trong bài toán, dẫn đến việc học sinh rất lúng túng và gặp rất nhiều khó khăn trong vấn đề giải loại toán này. Đối với việc giải bài toán bằng cách lập phương trình các em mới được học nên chưa quen với dạng toán tự mình làm ra phương trình. Xuất phát từ thực tế đó nên kết quả học tập của các em chưa cao. Nhiều em hiểu được lý thuyết rất chắc chắn nhưng khi áp dụng giải bài tập thì lại không làm được. Do vậy việc hướng dẫn giúp các em có kỹ năng lập phương trình để giải toán, ngoài việc hiểu lý thuyết, thì các em phải biết vận dụng thực hành, từ đó phát triển khả năng tư duy, đồng thời tạo hứng thú cho học sinh khi học nhằm nâng cao chất lượng học tập. Tình trạng chung hiện nay là các em ngại khó khi giải các bài toán, tôi thấy cần phải tạo ra cho các em có niềm say mê yêu thích học tập bộ môn toán, luôn tự đặt ra những câu hỏi và tự mình tìm ra câu trả lời. Khi gặp các bài toán khó, phải có nghị lực, tập trung tư tưởng, tin vào khả năng của mình trong quá trình học tập. Để giúp học sinh bớt khó khăn và cảm thấy dễ dàng hơn trong khi giải bài toán bằng cách lập phương trình ở lớp 8, tôi thấy cần phải hướng dẫn học sinh cách lập phương trình rồi giải phương trình một cách kỹ càng, yêu cầu học sinh có kỹ năng thực hành giải toán phần này cẩn thận. Nên tôi hướng dẫn học sinh tìm ra phương pháp giải toán phù hợp với từng dạng bài là một vấn đề quan trọng, chúng ta phải tích cực quan tâm thường xuyên, không chỉ giúp các em hiểu được lý thuyết mà còn phải tạo ra cho các em có một phương pháp học tập cho bản thân, rèn cho các em có khả năng thực hành. Nếu làm được điều đó chắc chắn kết quả học tập của các em sẽ đạt được như mong muốn. Việc hướng dẫn học sinh giải bài toán bằng cách lập phương trình ở lớp 8 là tiền đề để các em được làm quen những dạng đơn giản, là cơ sở cho những bài toán phức tạp hơn ở lớp trên. Nên đòi hỏi phải hướng dẫn cụ thể để học sinh hiểu một cách chắc chắn. Một mặt, giáo viên không chỉ truyền thụ cho học sinh những kiến thức như trong sách giáo khoa mà còn dạy cho học sinh cách giải bài tập. Giáo viên khi hướng dẫn cho học sinh giải các bài toán dạng này phải dựa trên các quy tắc chung là: yêu cầu về giải một bài toán, quy tắc giải bài toán bằng cách lập phương trình, phân loại các dạng toán, làm sáng tỏ mối quan hệ giữa các đại lượng dẫn đến lập được phương trình dễ dàng. Và khi lập được phương trình rồi thì đòi hỏi phải giải cho chính xác, tìm ra kết quả rồi sau cùng mới kết luận bài toán. Đây là bước đặc biệt quan trong và khó khăn không những đối với học sinh mà còn đối với giáo viên. Do đó giáo viên không những cố gắng rèn luyện cho học sinh cách giải mà cần khuyến khích học sinh tìm hiểu cách giải để học sinh phát huy được khả năng tư duy linh hoạt, nhạy bén khi tìm lời giải bài toán, tạo được lòng say mê, sáng tạo, ngày càng tự tin, không còn tâm lý lo ngại đối đối với việc giải bài toán bằng cách lập phương trình. Để giúp học sinh hiểu sâu hơn kiến thức về giải toán bằng cách lập phương trình, nhất là khi áp dụng vào giải bài tập, trong quá trình giảng dạy, tôi đã tổng hợp, phân dạng toán có sử dụng giải bài toán bằng cách lập phương trình để giải nhằm giúp cho học sinh hiểu được phương pháp giải từng loại toán đó. Từ đó các em có kỹ năng nhận dạng và đề ra phương pháp giải thích hợp trong từng trường hợp cụ thể. Trong đề tài này, tôi đưa ra một số dạng giải bài toán bằng cách lập phương trình thường hay gặp như sau: Dạng 1. Dạng toán liên quan đến số học. Dạng 2. Dạng toán về chuyển động. Dạng 3. Dạng toán về công việc làm chung, làm riêng. Dạng 4. Dạng toán về năng suất lao động. Dạng 5. Dạng toán về tỉ lệ chia phần. Dạng 6. Dạng toán có liên quan hình học . Dạng 7. Dạng toán có liên quan vật lí, hóa học. Dạng 8. Dạng toán có chứa tham số.

Trang 1

LỜI NÓI ĐẦU

Môn Toán có một vai trò rất quan trọng trong trường trung học cơ sở Do

đó việc giải các bài toán bằng cách lập phương trình đối với học sinh trung học

cơ sở là một việc làm mới mẻ Đề bài cho không phải là những phương trình cósẵn mà là một đoạn văn mô tả mối quan hệ giữa các đại lượng, học sinh phảichuyển đổi được mối quan hệ giữa các đại lượng được mô tả bằng lời văn sangmối quan hệ toán học Hơn nữa, nội dung của các bài toán này, hầu hết đều gắn

bó với các hoạt động thực tế của con người, xã hội hoặc tự nhiên,… Cho nêntrong quá trình giải học sinh thường quên, không quan tâm đến yếu tố thực tiễndẫn đến đáp số vô lý Một đặc thù riêng nữa là loại toán này là hầu hết các bàitoán đều được gắn liền với nội dung thực tế Chính vì vậy mà việc chọn ẩn sốthường là những số liệu có liên quan đến thực tế Do đó khi giải toán học sinhthường mắc sai lầm và thoát ly thực tế Từ những lý do đó mà học sinh rất sợgiải loại toán này Bên cạnh, học sinh chưa biết phân loại toán, chưa khái quátđược cách giải cho mỗi dạng Kỹ năng phân tích tổng hợp của học sinh cònchậm, cách chọn ẩn số, mối liên hệ giữa các dữ liệu trong bài toán, dẫn đến việchọc sinh rất lúng túng và gặp rất nhiều khó khăn trong vấn đề giải loại toán này.Đối với việc giải bài toán bằng cách lập phương trình các em mới được học nênchưa quen với dạng toán tự mình làm ra phương trình Xuất phát từ thực tế đónên kết quả học tập của các em chưa cao Nhiều em hiểu được lý thuyết rất chắcchắn nhưng khi áp dụng giải bài tập thì lại không làm được Do vậy việc hướngdẫn giúp các em có kỹ năng lập phương trình để giải toán, ngoài việc hiểu lýthuyết, thì các em phải biết vận dụng thực hành, từ đó phát triển khả năng tưduy, đồng thời tạo hứng thú cho học sinh khi học nhằm nâng cao chất lượng họctập

Tình trạng chung hiện nay là các em ngại khó khi giải các bài toán, tôithấy cần phải tạo ra cho các em có niềm say mê yêu thích học tập bộ môn toán,luôn tự đặt ra những câu hỏi và tự mình tìm ra câu trả lời Khi gặp các bài toánkhó, phải có nghị lực, tập trung tư tưởng, tin vào khả năng của mình trong quátrình học tập Để giúp học sinh bớt khó khăn và cảm thấy dễ dàng hơn trong khigiải bài toán bằng cách lập phương trình ở lớp 8, tôi thấy cần phải hướng dẫnhọc sinh cách lập phương trình rồi giải phương trình một cách kỹ càng, yêu cầuhọc sinh có kỹ năng thực hành giải toán phần này cẩn thận

Nên tôi hướng dẫn học sinh tìm ra phương pháp giải toán phù hợp vớitừng dạng bài là một vấn đề quan trọng, chúng ta phải tích cực quan tâm thườngxuyên, không chỉ giúp các em hiểu được lý thuyết mà còn phải tạo ra cho các

em có một phương pháp học tập cho bản thân, rèn cho các em có khả năng thực

Trang 2

hành Nếu làm được điều đó chắc chắn kết quả học tập của các em sẽ đạt đượcnhư mong muốn.

Việc hướng dẫn học sinh giải bài toán bằng cách lập phương trình ở lớp 8

là tiền đề để các em được làm quen những dạng đơn giản, là cơ sở cho nhữngbài toán phức tạp hơn ở lớp trên Nên đòi hỏi phải hướng dẫn cụ thể để học sinhhiểu một cách chắc chắn

Một mặt, giáo viên không chỉ truyền thụ cho học sinh những kiến thứcnhư trong sách giáo khoa mà còn dạy cho học sinh cách giải bài tập Giáo viênkhi hướng dẫn cho học sinh giải các bài toán dạng này phải dựa trên các quy tắcchung là: yêu cầu về giải một bài toán, quy tắc giải bài toán bằng cách lậpphương trình, phân loại các dạng toán, làm sáng tỏ mối quan hệ giữa các đạilượng dẫn đến lập được phương trình dễ dàng Và khi lập được phương trình rồithì đòi hỏi phải giải cho chính xác, tìm ra kết quả rồi sau cùng mới kết luận bàitoán Đây là bước đặc biệt quan trong và khó khăn không những đối với họcsinh mà còn đối với giáo viên Do đó giáo viên không những cố gắng rèn luyệncho học sinh cách giải mà cần khuyến khích học sinh tìm hiểu cách giải để họcsinh phát huy được khả năng tư duy linh hoạt, nhạy bén khi tìm lời giải bài toán,tạo được lòng say mê, sáng tạo, ngày càng tự tin, không còn tâm lý lo ngại đốiđối với việc giải bài toán bằng cách lập phương trình

Để giúp học sinh hiểu sâu hơn kiến thức về giải toán bằng cách lậpphương trình, nhất là khi áp dụng vào giải bài tập, trong quá trình giảng dạy, tôi

đã tổng hợp, phân dạng toán có sử dụng giải bài toán bằng cách lập phương trình

để giải nhằm giúp cho học sinh hiểu được phương pháp giải từng loại toán đó

Từ đó các em có kỹ năng nhận dạng và đề ra phương pháp giải thích hợp trongtừng trường hợp cụ thể

Trong đề tài này, tôi đưa ra một số dạng giải bài toán bằng cách lậpphương trình thường hay gặp như sau:

Dạng 1 Dạng toán liên quan đến số học

Dạng 2 Dạng toán về chuyển động

Dạng 3 Dạng toán về công việc làm chung, làm riêng

Dạng 4 Dạng toán về năng suất lao động

Dạng 5 Dạng toán về tỉ lệ chia phần

Dạng 6 Dạng toán có liên quan hình học

Dạng 7 Dạng toán có liên quan vật lí, hóa học

Dạng 8 Dạng toán có chứa tham số

Trang 3

Đối với từng dạng toán, tôi nêu lên phương pháp giải và đưa ra một số ví

dụ có lời giải rõ ràng, các ví dụ được sắp xếp từ dễ đến khó, được trình bày đơngiản, dễ hiểu đáp ứng cho nhiều đối tượng học sinh

Hi vọng rằng đề tài này sẽ giúp các em học sinh lớp 8 có thêm kĩ năngnhận dạng và giải thành thạo các bài toán giải bằng cách lập phương trình

Mặc dù đã có nhiều cố gắng, song đề tài này không tránh khỏi nhữngthiếu sót , tôi rất mong nhận được sự đóng góp ý kiến của các thầy cô giáo vàcác em học sinh

Trang 4

PHẦN I MỞ ĐẦU

1 Lý do chọn đề tài

Đối với bộ môn toán lớp 8 ở trường trung học cơ sở, trong các đề thi họcsinh giỏi toán, thi giải toán qua internet hay khi thi học kỳ, thường hay gặp cácbài toán bằng cách lập phương trình Trong chương trình sách giáo khoa Toánlớp 8, học sinh được làm quen với giải bài toán bằng cách lập phương trình vàứng dụng của nó trong việc giải toán Nhưng nội dung và thời lượng về phầnnày trong sách giáo khoa lại rất ít, lượng bài tập chưa đa dạng Trong khi đó giảibài toán bằng cách lập phương trình có phạm vi ứng dụng rất rộng rãi, đó là mộtnội dung quan trọng trong chương trình toán 8 Qua việc khảo sát học sinh lớp 8tại trường trung học cơ sở , tôi nhận thấy các em vận dụng giải bàitoán bằng cách lập phương trình chưa thật linh hoạt, chưa biết khai thác bài vàogiải nhiều loại toán Các em thường gặp khó khăn trong việc phân tích bài toán

và xác định phương pháp giải do đó các em có thể gặp những sai lầm trong lờigiải Xuất phát từ thực tế đó, việc hướng dẫn giúp các em có kỹ năng để giảitoán bằng cách lập phương trình, ngoài việc tiếp thu lý thuyết thì các em phảibiết vận dụng thực hành, từ đó phát triển khả năng tư duy, đồng thời tạo hứngthú cho học sinh khi học nhằm nâng cao chất lượng bộ môn toán là điều hết sứccần thiết

Qua thực tế một số năm giảng dạy, ôn tập, bồi dưỡng môn toán lớp 8 tôiluôn suy nghĩ làm thế nào để nâng cao chất lượng học tập cho các em học sinh,giúp các em biết vận dụng giải bài toán bằng cách lập phương trình Góp phầngiúp các em tự tin hơn trong khi thi cử đồng thời từng bước để hoàn thiệnphương pháp của mình, nên bản thân tôi đã chọn và nghiên cứu đề tài “Hướngdẫn học sinh giải bài toán bằng cách lập phương trình”, môn toán lớp 8

2 Lịch sử vấn đề nghiên cứu

Ở trường trường trung học cơ sở ., việc ôn tập và bồi dưỡnghọc sinh giỏi được tổ chức thường xuyên trong các năm học; đặc biệt là bồidưỡng học sinh giỏi toán trường trung học cơ sở, bồi dưỡng học sinh giỏi giảitoán qua mạng Internet Các giáo viên bộ môn Toán trong nhà trường cũng đãthực hiện giảng dạy giải toán bằng cách lập phương trình

Giải toán bằng cách lập phương trình đối với các em học sinh lớp 8 bằngviệc đưa ra lời giải của một số bài toán Thông qua chuyên đề đó các em họcsinh đã bước đầu được làm quen với dạng toán này Song nhiều em còn lúngtúng không tìm ra phương pháp giải bài toán bằng cách lập phương trình.Vì giảibài toán bằng cách lập phương trình có rất nhiều dạng bài ứng dụng

Trang 5

3 Mục tiêu nghiên cứu

- Đề tài giúp học sinh làm tốt hơn giải bài toán bằng cách lập phương

trình, giúp các em đạt được kết quả cao hơn trong môn Toán đặc biệt là pháttriển năng lực tư duy sáng tạo

- Tạo sự hứng thú cho học sinh trong học tập bộ môn Toán cũng như kíchthích sự đam mê của học sinh đối với bộ môn Toán

- Giúp đồng nghiệp có thêm nhiều phương pháp truyền thụ kiến thức chohọc sinh đặc biệt là bồi dưỡng học sinh khá, giỏi về giải bài toán bằng cách lậpphương trình

4 Đối tượng, phạm vi, nhiệm vụ nghiên cứu

- Đề tài áp dụng cho các em học sinh khối lớp 8 ở trườngTHCS , huyện

- Nghiên cứu lí luận và thực tiễn về giải bài toán bằng cách lập phương trình

- Xây dựng hệ thống các dạng bài tập giải bài toán bằng cách lập phươngtrình thích hợp cho từng dạng bài

- Thực nghiệm phương pháp giải bài toán giải bài toán bằng cách lậpphương trình trong giảng dạy, ôn tập, khi thi học kỳ và bồi dưỡng học sinh giỏi

- Đề xuất bài học kinh nghiệm trong quá trình nghiên cứu

5 Phương pháp nghiên cứu, thời gian nghiên cứu

- Khảo sát thực tiễn

- Phân tích, tổng hợp, khái quát hóa

- Nghiên cứu tài liệu (Sách giáo khoa, sách tham khảo, sách nâng cao)

- Vận dụng thực hành trong giảng dạy, bồi dưỡng và so sánh, tổng kết

- Thời gian nghiên cứu: Từ tháng 9/2015 đến tháng 9/2016

6 Điểm mới của đề tài

Điểm mới trong đề tài này là hệ thống được các dạng bài tập giải bài toánbằng cách lập phương trình Đối với từng dạng bài đã nêu lên phương pháp giải

và đưa ra các ví dụ minh họa, có trình bày lời giải rõ ràng Điều đó nhằm giúpcác em học sinh định hướng được phương pháp giải đúng trong từng dạng bài

Tìm ra các kỹ năng giải toán mới hoặc các kỹ năng giải toán cũ song có

cách vận dụng mới trong việc giải bài toán bằng cách lập phương trình cho học

sinh lớp 8 Giáo viên biết thêm một số kỹ năng giải bài toán bằng cách lập

phương trình và vận dụng với từng đối tượng học sinh.

Trang 6

Học sinh chủ động chiếm lĩnh kiến thức, mạnh dạn, tự tin, phát triển trítuệ của bản thân; xác định được điều kiện hoặc đặt điều kiện chính xác; biết dựavào mối liên hệ giữa các đại lượng để thiết lập phương trình; lời giải chặt chẽ; giảiphương trình đúng; biết đối chiếu điều kiện; đủ đơn vị…

Trang 7

PHẦN II NỘI DUNG

I CƠ SỞ LÝ LUẬN

1 Giải bài toán bằng cách lập phương trình

* Để giải bài toán bằng cách lập phương trình phải dựa vào quy tắc chunggồm các bước như sau:

+ Bước 1: Lập phương trình (gồm các công việc sau):

- Chọn ẩn số (ghi rõ đơn vị) và đặt điều kiện thích hợp cho ẩn

- Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết

- Lập phương trình biểu thị mối quan hệ giữa các đại lượng

+ Bước 2: Giải phương trình:

+ Bước 3: Trả lời: Kiểm tra xem trong các nghiệm của phương trình,nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận

* Điều cần lưu ý là để áp dụng giải bài toán bằng cách lập phương trìnhthì kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điềukiện của ẩn, nghiệm nào không, rồi kết luận

2 Ứng dụng về giải một bài toán

- Lời giải không phạm sai lầm và không có sai sót mặc dù nhỏ: Trước tiên

giáo viên hướng dẫn học sinh hiểu đề toán và trong quá trình giải không có saisót về kiến thức, phương pháp suy luận, kỹ năng tính toán, ký hiệu, điều kiệncủa ẩn; rèn cho học sinh có thói quen đặt điều kiện của ẩn và xem xét đối chiếukết quả với điều kiện của ẩn xem đã hợp lý chưa

- Lời giải bài toán lập luận phải có căn cứ chính xác: Đó là trong quá trình

thực hiện từng bước có lô gíc chặt chẽ với nhau, có cơ sở lý luận chặt chẽ Đặcbiệt phải chú ý dến việc thoả mãn điều kiện nêu trong giả thiết Xác định ẩnkhéo léo, mối quan hệ giữa ẩn và các dữ kiện đã cho làm nổi bật được ý phảitìm Nhờ mối tương quan giữa các đại lượng trong bài toán thiết lập đượcphương trình từ đó tìm được giá trị của ẩn Muốn vậy cần cho học sinh hiểuđược đâu là ẩn, đâu là dữ kiện, đâu là điều kiện, có thể thoả mãn được điều kiệnhay không, điều kiện có đủ để xác định được ẩn không? Từ đó xác định hướng

đi, xây dựng được cách giải

- Lời giải phải đầy đủ và mang tính toàn diện: Hướng dẫn học sinh không

được bỏ sót khả năng chi tiết nào Không được thừa nhưng cũng không đượcthiếu Hướng dẫn học sinh cách kiểm tra lại lời giải xem đã đầy đủ chưa? Kết

Trang 8

quả của bài toán đã là đại diện phù hợp chưa? Nếu thay đổi điều kiện bài toánrơi vào trường hợp đặc biệt thì kết quả vẫn luôn luôn đúng.

- Lời giải bài toán phải đơn giản: Bài giải phải đảm bảo được 3 yêu cầu

trên không sai sót Có lập luận, mang tính toàn diện và phù hợp kiến thức, trình

độ của học sinh, đại đa số học sinh hiểu và thực hiện được

- Lời giải phải trình bày khoa học: Hướng dẫn học sinh hiểu được mối liên

hệ giữa các bước giải trong bài toán phải lôgíc, chặt chẽ với nhau Các bước sauđược suy ra từ các bước trước nó đã được kiểm nghiệm, chứng minh là đúnghoặc những điều đã biết từ trước

- Lời giải bài toán phải rõ ràng ,đầy đủ, có thể nên kiểm tra lại: Lưu ý đến

việc giải các bước lập luận, tiến hành không chồng chéo nhau, phủ định lẫnnhau, kết quả phải đúng Muốn vậy cần hướng dẫn cho học sinh có thói quensau khi giải xong cần thử lại kết quả và tìm hết các nghiệm của bài toán, tránh

bỏ sót nhất là đối với phương trình bậc hai

II THỰC TRẠNG CỦA VẤN ĐỀ

1 Những thuận lợi

- Ban giám hiệu nhà trường luôn quan tâm đến công tác ôn tập cho họcsinh lớp 8 và bồi dưỡng học sinh giỏi, tạo điều kiện tốt về cơ sở vật chất và thờigian cho công tác ôn tập và bồi dưỡng học sinh

- Trong thư viện nhà trường đã có một số loại sách tham khảo, nâng cao

bộ môn toán

2 Những khó khăn

Môn toán là một môn học khó nên nhiều em học sinh chưa có hứng thú,thậm trí có em còn cảm thấy sợ khi gặp các bài toán với yêu cầu khác các bàitrong sách giáo khoa; đặc biệt đối với các bài toán giải bằng cách lập phươngtrình không tìm ra cách giải Hơn thế nữa các em học sinh chưa có kĩ năng tựnghiên cứu tài liệu tham khảo, sách nâng cao nên chưa có tư duy sáng tạo tronggiải toán

Khi giải bài toán bằng cách lập phương trình học sinh thường giải thiếuđiều kiện hoặc đặt điều kiện không chính xác Không biết dựa vào mối liên hệgiữa các đại lượng để thiết lập phương trình, lời giải thiếu chặt chẽ Giải phươngtrình chưa đúng, quên đối chiếu điều kiện, thiếu đơn vị

Giáo viên chưa có nhiều thời gian và biện pháp hữu hiệu để phụ đạo họcsinh yếu kém Giáo viên nghiên cứu về phương pháp giải bài toán bằng cách lậpphương trình song mới chỉ dừng lại ở việc vận dụng các bước giải một cách

Trang 9

nhuần nhuyễn chứ chưa chú ý đến việc phân loại dạng toán, kỹ năng giải từngloại và những điều cần chú ý khi giải từng loại đó Trong quá trình giảng dạynhiều giáo viên trăn trở là làm thế nào để học sinh phân biệt được từng dạng vàcách giải từng dạng đó

Qua khảo sát chất lượng học sinh về giải bài toán bằng cách lập phươngtrình, kết quả đạt được còn thấp, hầu hết các em chưa có kĩ năng tìm ra phươngpháp giải hoặc vẫn có những sai lầm trong lời giải Kết quả cụ thể như sau:

Điểm

III CÁC BIỆN PHÁP GIẢI QUYẾT VẤN ĐỀ

Trên cơ sở lý thuyết đã đưa ra, giáo viên hướng dẫn học sinh áp dụng giảicác bài toán cụ thể bằng việc chỉ ra những dạng bài tập ứng dụng giải bài toánbằng cách lập phương, mỗi dạng, giáo viên nêu phương pháp giải và đưa ra một

số ví dụ minh họa yêu cầu học sinh giải, sau đó giáo viên trình bày lời giải đúng.Bên cạnh đó đưa ra bài tập cho học sinh tự giải

1 Các dạng bài tập và phương pháp giải

* Dạng 1: Dạng toán liên quan đến số học

Ở chương trình đại số lớp 8, các em cũng thường gặp loại bài tìm một số

tự nhiên có hai chữ số, đây cũng là loại toán tương đối khó đối với các em; đểgiúp học sinh đỡ lúng túng khi giải loại bài này thì trước hết phải cho các emhiểu được một số kiến thức liên quan như:

- Cách viết số trong hệ thập phân

- Mối quan hệ giữa các chữ số, vị trí giữa các chữ số trong số cần tìm…;điều kiện của các chữ số

Bài toán: (SGK đại số 8) Một số tự nhiên có hai chữ số, tổng các chữ số bằng 7.Nếu thêm chữ số 0 vào giữa hai chữ số thì được số lớn hơn số đã cho là 270.Tìm số đã cho

Trang 10

- Sau khi viết chữ số 0 vào giữa hai số ta được một số tự nhiên như thếnào? lớn hơn số cũ là bao nhiêu?

* Lời giải

Thì chữ số hàng đơn vị của số đã cho là: 7 - x

- Khi đổi chỗ các chữ số hàng trăm, chục, đơn vị ta cũng biểu diễn tương

tự như vậy Dựa vào đó ta đặt điều kiện ẩn số sao cho phù hợp

* Dạng 2: Dạng toán về chuyển động

Trong chương trình lớp 8 thường gặp các bài toán về dạng chuyển động

ở dạng đơn giản như: Chuyển động cùng chiều, ngược chiều trên cùng quãngđường… hoặc chuyển động trên dòng nước

Trước tiên cần cho học sinh hiểu chắc các kiến thức, công thức liên quan,đơn vị các đại lượng

Trong dạng toán chuyển động cần phải hiểu rõ các đại lượng quãngđường, vận tốc, thời gian, mối quan hệ của chúng qua công thức S = v.t

Trang 11

Từ đó suy ra: v =S

v Hoặc đối với chuyển động trên sông có dòng nước chảy

Thì : vxuôi = vThực + v dòng nước

vngược = vThực - v dòng nước

Ta xét bài toán sau: Để đi đoạn đường từ C đến D, xe máy phải đi hết

5giờ 30’; ô tô đi hết 3giờ 30’ phút Tính quãng đường CD Biết vận tốc ôtô lớnhơn vận tốc xe máy là 40km/h

Đối với bài toán chuyển động, khi ghi tóm tắt đề bài, đồng thời ta vẽ sơ đồminh họa thì học sinh dễ hình dung bài toán hơn

- Các đối tượng tham gia :(ô tô- xe máy)

- Các đại lượng liên quan: quãng đường , vận tốc , thời gian

- Các số liệu đã biết:

+ Thời gian xe máy đi: 5 giờ 30’

+ Thời gian ô tô đi: 3 giờ 30’

+ Hiệu hai vận tốc: 40 km/h

Cần lưu ý : Hai chuyển động này trên cùng một quãng đường không đổi.

Quan hệ giữa các đại lượng s, v, t được biểu diễn bởi công thức: S = v.t

Như vậy ở bài toán này có đại lượng chưa biết, mà ta cần tính chiều dàiđoạn CD, nên có thể chọn x (km) là chiều dài đoạn đường CD; điều kiện: x > 0

Biểu thị các đại lượng chưa biết qua ẩn và qua các đại lượng đã biết

Trang 12

- Giải phương trình trên ta được x = 385 Giá trị này của x phù hợp vớiđiều kiện trên Vậy ta trả lời ngay được chiều dài đoạn CD là 385(km).

Sau khi giải xong, giáo viên cần cho học sinh thấy rằng: Như ta đã phân tích

ở trên thì bài toán này còn có vận tốc của mỗi xe chưa biết, nên ngoài việc chọnquãng đường là ẩn, ta cũng có thể chọn vận tốc xe máy hoặc vận tốc ô tô là ẩn

- Nếu gọi vận tốc xe máy là x (km/h): x > 0

Thì vận tốc ôtô là x + 40 (km/h)

- Vì quãng đường CD không đổi nên có thể biểu diễn theo hai cách(quãng đường xe máy đi hoặc của ôtô đi)

- Ta có phương trình: 5,5 x = 3,5 (x + 40)

Giải phương trình trên ta được: x = 70

Đến đây học sinh dễ mắc sai lầm là dừng lại trả lời kết quả bài toán: Vậntốc xe máy là 70 km/h Do đó cần khắc sâu cho các em thấy được bài toán yêucầu tìm quãng đường nên khi có vận tốc rồi ra phải tìm quãng đường

- Trong bước chọn kết quả thích hợp và trả lời, cần hướng dẫn học sinhđối chiếu với điều kiện của ẩn, yêu cầu của đề bài Chẳng hạn như bài toán trên,

ẩn chọn là vận tốc của xe máy, sau khi tìm được tích bằng 70, thì không thể trảlời bài toán là vận tốc xe máy là 70 km/h, mà phải trả lời về chiều dài đoạnđường CD mà đề bài đòi hỏi

Tóm lại: Khi giảng dạng toán chuyển động, trong bài có nhiều đại lượng

chưa biết, nên ở bước lập phương trình ta tùy ý lựa chọn một trong các đại lượngchưa biết làm ẩn Nhưng ta nên chọn trực tiếp đại lượng bài toán yêu cầu cầnphải tìm là ẩn Nhằm tránh những thiếu sót khi trả lời kết quả

Song thực tế không phải bài nào ta cũng chọn được trực tiếp đại lượngphải tìm là ẩn mà có thể phải chọn đại lượng trung gian là ẩn

- Cần chú ý 1 điều là nếu gọi vận tốc ôtô là x (km/h) thì điều kiện x > 0chưa đủ mà phải x > 40 vì dựa vào thực tế bài toán là vận tốc ôtô lớn hơn vậntốc xe máy là 40 (km/h)

* Dạng 3 : Dạng toán về công việc làm chung, làm riêng.

- Bài toán (SGK đại số 8): Hai xóm Khâu Giang và Quang Trung của

xã cùng sửa một con đường hết 12 ngày Mỗi ngày phần việc làm

được Nếu làm một mình, mỗi xóm sẽ sửa xong con đường trong bao nhiêungày?

Ngày đăng: 10/04/2024, 10:42

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w