1. Trang chủ
  2. » Khoa Học Tự Nhiên

Bài tập toán cao cấp tập 3 pptx

329 559 2

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 329
Dung lượng 1,88 MB

Nội dung

NGUY ˆ E ˜ N THUY ’ THANH B ` AI T ˆ A . P TO ´ AN CAO C ˆ A ´ P Tˆa . p3 Ph´ep t´ınh t´ıch phˆan. L´y thuyˆe ´ t chuˆo ˜ i. Phu . o . ng tr`ınh vi phˆan NH ` AXU ˆ A ´ TBA ’ NDA . IHO . CQU ˆ O ´ C GIA H ` AN ˆ O . I Mu . clu . c 10 T´ıch phˆan bˆa ´ tdi . nh 4 10.1 C´ac phu . o . ng ph´ap t´ınh t´ıch phˆan . . . . . . . . . . . . 4 10.1.1 Nguyˆen h`am v`a t´ıch phˆan bˆa ´ td i . nh 4 10.1.2 Phu . o . ng ph´ap d ˆo ’ ibiˆe ´ n 12 10.1.3 Phu . o . ng ph´ap t´ıch phˆan t`u . ng phˆa ` n 21 10.2 C´ac l´o . p h`am kha ’ t´ıch trong l´o . p c´ac h`am so . cˆa ´ p 30 10.2.1 T´ıch phˆan c´ac h`am h˜u . uty ’ 30 10.2.2 T´ıch phˆan mˆo . tsˆo ´ h`am vˆo ty ’ d o . n gia ’ n 37 10.2.3 T´ıch phˆan c´ac h`am lu . o . . ng gi´ac . . . . . . . . . . 48 11 T´ıch phˆan x´ac d i . nh Riemann 57 11.1 H`am kha ’ t´ıch Riemann v`a t´ıch phˆan x´ac d i . nh . . . . . 58 11.1.1 D - i . nhngh˜ıa 58 11.1.2 D - iˆe ` ukiˆe . nd ˆe ’ h`am kha ’ t´ıch 59 11.1.3 C´ac t´ınh chˆa ´ tco . ba ’ ncu ’ a t´ıch phˆan x´ac d i . nh . . 59 11.2 Phu . o . ng ph´ap t´ınh t´ıch phˆan x´ac d i . nh 61 11.3 Mˆo . tsˆo ´ ´u . ng du . ng cu ’ a t´ıch phˆan x´ac d i . nh 78 11.3.1 Diˆe . n t´ıch h`ınh ph˘a ’ ng v`a thˆe ’ t´ıch vˆa . tthˆe ’ 78 11.3.2 T´ınh d ˆo . d`ai cung v`a diˆe . n t´ıch m˘a . t tr`on xoay . . 89 11.4 T´ıch phˆan suy rˆo . ng 98 11.4.1 T´ıch phˆan suy rˆo . ng cˆa . n vˆo ha . n 98 11.4.2 T´ıch phˆan suy rˆo . ng cu ’ a h`am khˆong bi . ch˘a . n . . 107 2MU . CLU . C 12 T´ıch phˆan h`am nhiˆe ` ubiˆe ´ n 117 12.1 T´ıch phˆan 2-l´o . p 118 12.1.1 Tru . `o . ng ho . . pmiˆe ` nch˜u . nhˆa . t 118 12.1.2 Tru . `o . ng ho . . pmiˆe ` ncong 118 12.1.3 Mˆo . t v`ai ´u . ng du . ng trong h`ınh ho . c 121 12.2 T´ıch phˆan 3-l´o . p 133 12.2.1 Tru . `o . ng ho . . pmiˆe ` n h`ınh hˆo . p 133 12.2.2 Tru . `o . ng ho . . pmiˆe ` ncong 134 12.2.3 136 12.2.4 Nhˆa . nx´etchung 136 12.3 T´ıch phˆan d u . `o . ng 144 12.3.1 C´ac d i . nh ngh˜ıa co . ba ’ n 144 12.3.2 T´ınh t´ıch phˆan d u . `o . ng 146 12.4 T´ıch phˆan m˘a . t 158 12.4.1 C´ac d i . nh ngh˜ıa co . ba ’ n 158 12.4.2 Phu . o . ng ph´ap t´ınh t´ıch phˆan m˘a . t 160 12.4.3 Cˆong th´u . c Gauss-Ostrogradski . . . . . . . . . 162 12.4.4 Cˆong th´u . cStokes 162 13 L´y thuyˆe ´ t chuˆo ˜ i 177 13.1 Chuˆo ˜ isˆo ´ du . o . ng 178 13.1.1 C´ac d i . nh ngh˜ıa co . ba ’ n 178 13.1.2 Chuˆo ˜ isˆo ´ du . o . ng 179 13.2 Chuˆo ˜ ihˆo . itu . tuyˆe . td ˆo ´ iv`ahˆo . itu . khˆong tuyˆe . tdˆo ´ i . . . 191 13.2.1 C´ac d i . nh ngh˜ıa co . ba ’ n 191 13.2.2 Chuˆo ˜ id an dˆa ´ u v`a dˆa ´ uhiˆe . u Leibnitz . . . . . . 192 13.3 Chuˆo ˜ il˜uy th`u . a 199 13.3.1 C´ac d i . nh ngh˜ıa co . ba ’ n 199 13.3.2 D - iˆe ` ukiˆe . n khai triˆe ’ nv`aphu . o . ng ph´ap khai triˆe ’ n 201 13.4 Chuˆo ˜ iFourier 211 13.4.1 C´ac d i . nh ngh˜ıa co . ba ’ n 211 MU . CLU . C3 13.4.2 Dˆa ´ uhiˆe . udu ’ vˆe ` su . . hˆo . itu . cu ’ a chuˆo ˜ i Fourier . . . 212 14 Phu . o . ng tr`ınh vi phˆan 224 14.1 Phu . o . ng tr`ınh vi phˆan cˆa ´ p1 225 14.1.1 Phu . o . ng tr`ınh t´ach biˆe ´ n 226 14.1.2 Phu . o . ng tr`ınh d ˘a ’ ng cˆa ´ p 231 14.1.3 Phu . o . ng tr`ınh tuyˆe ´ nt´ınh 237 14.1.4 Phu . o . ng tr`ınh Bernoulli . . . . . . . . . . . . . . 244 14.1.5 Phu . o . ng tr`ınh vi phˆan to`an phˆa ` n 247 14.1.6 Phu . o . ng tr`ınh Lagrange v`a phu . o . ng tr`ınh Clairaut255 14.2 Phu . o . ng tr`ınh vi phˆan cˆa ´ pcao 259 14.2.1 C´ac phu . o . ng tr`ınh cho ph´ep ha . thˆa ´ pcˆa ´ p 260 14.2.2 Phu . o . ng tr`ınh vi phˆan tuyˆe ´ n t´ınh cˆa ´ p2v´o . ihˆe . sˆo ´ h˘a ` ng 264 14.2.3 Phu . o . ng tr`ınh vi phˆan tuyˆe ´ n t´ınh thuˆa ` n nhˆa ´ t cˆa ´ p n n n (ptvptn cˆa ´ p n n n)v´o . ihˆe . sˆo ´ h˘a ` ng . . . . . . 273 14.3 Hˆe . phu . o . ng tr`ınh vi phˆan tuyˆe ´ n t´ınh cˆa ´ p1v´o . ihˆe . sˆo ´ h˘a ` ng290 15 Kh´ai niˆe . mvˆe ` phu . o . ng tr`ınh vi phˆan d a . o h`am riˆeng 304 15.1 Phu . o . ng tr`ınh vi phˆan cˆa ´ p 1 tuyˆe ´ n t´ınh d ˆo ´ iv´o . i c´ac d a . o h`amriˆeng 306 15.2 Gia ’ iphu . o . ng tr`ınh d a . o h`am riˆeng cˆa ´ p2do . n gia ’ n nhˆa ´ t 310 15.3 C´ac phu . o . ng tr`ınh vˆa . tl´y to´an co . ba ’ n 313 15.3.1 Phu . o . ng tr`ınh truyˆe ` n s´ong . . . . . . . . . . . . 314 15.3.2 Phu . o . ng tr`ınh truyˆe ` n nhiˆe . t 317 15.3.3 Phu . o . ng tr`ınh Laplace . . . . . . . . . . . . . . 320 T`ai liˆe . u tham kha ’ o 327 Chu . o . ng 10 T´ıch phˆan bˆa ´ td i . nh 10.1 C´ac phu . o . ng ph´ap t´ınh t´ıch phˆan . . . . . . 4 10.1.1 Nguyˆen h`am v`a t´ıch phˆan bˆa ´ td i . nh 4 10.1.2 Phu . o . ng ph´ap dˆo ’ ibiˆe ´ n 12 10.1.3 Phu . o . ng ph´ap t´ıch phˆan t`u . ng phˆa ` n 21 10.2 C´ac l´o . p h`am kha ’ t´ıch trong l´o . p c´ac h`am so . cˆa ´ p 30 10.2.1 T´ıch phˆan c´ac h`am h˜u . uty ’ 30 10.2.2 T´ıch phˆan mˆo . tsˆo ´ h`am vˆo ty ’ d o . n gia ’ n 37 10.2.3 T´ıch phˆan c´ac h`am lu . o . . ng gi´ac . . . . . . . 48 10.1 C´ac phu . o . ng ph´ap t´ınh t´ıch phˆan 10.1.1 Nguyˆen h`am v`a t´ıch phˆan bˆa ´ tdi . nh D - i . nh ngh˜ıa 10.1.1. H`am F (x)du . o . . cgo . i l`a nguyˆen h`am cu ’ a h`am f(x) trˆen khoa ’ ng n`ao d ´onˆe ´ u F (x)liˆen tu . c trˆen khoa ’ ng d´o v`a kha ’ vi 10.1. C´ac phu . o . ng ph´ap t´ınh t´ıch phˆan 5 ta . imˆo ˜ idiˆe ’ m trong cu ’ a khoa ’ ng v`a F  (x)=f(x). D - i . nh l ´y 10.1.1. (vˆe ` su . . tˆo ` nta . i nguyˆen h`am) Mo . i h`am liˆen tu . ctrˆen d oa . n [a, b] dˆe ` u c´o nguyˆen h`am trˆen khoa ’ ng (a, b). D - i . nh l´y 10.1.2. C´ac nguyˆen h`am bˆa ´ tk`ycu ’ a c`ung mˆo . t h`am l`a chı ’ kh´ac nhau bo . ’ imˆo . th˘a ` ng sˆo ´ cˆo . ng. Kh´ac v´o . id a . o h`am, nguyˆen h`am cu ’ a h`am so . cˆa ´ p khˆong pha ’ i bao gi`o . c˜ung l`a h`am so . cˆa ´ p. Ch˘a ’ ng ha . n, nguyˆen h`am cu ’ a c´ac h`am e −x 2 , cos(x 2 ), sin(x 2 ), 1 lnx , cos x x , sin x x , l`a nh˜u . ng h`am khˆong so . cˆa ´ p. D - i . nh ngh˜ıa 10.1.2. Tˆa . pho . . pmo . i nguyˆen h`am cu ’ a h`am f(x) trˆen khoa ’ ng (a, b)d u . o . . cgo . i l`a t´ıch phˆan bˆa ´ td i . nh cu ’ a h`am f(x) trˆen khoa ’ ng (a, b)v`ad u . o . . ck´yhiˆe . ul`a  f(x)dx. Nˆe ´ u F (x) l`a mˆo . t trong c´ac nguyˆen h`am cu ’ a h`am f(x) trˆen khoa ’ ng (a, b) th`ı theo d i . nh l´y 10.1.2  f(x)dx = F (x)+C, C ∈ R trong d ´o C l`a h˘a ` ng sˆo ´ t`uy ´y v`a d˘a ’ ng th´u . ccˆa ` nhiˆe ’ ul`ad ˘a ’ ng th ´u . cgi˜u . a hai tˆa . pho . . p. C´ac t´ınh chˆa ´ tco . ba ’ ncu ’ a t´ıch phˆan bˆa ´ td i . nh: 1) d   f(x)dx  = f(x)dx. 2)   f(x)dx   = f(x). 3)  df (x)=  f  (x)dx = f(x)+C. T`u . d i . nh ngh˜ıa t´ıch phˆan bˆa ´ tdi . nh r ´ut ra ba ’ ng c´ac t´ıch phˆan co . ba ’ n (thu . `o . ng d u . o . . cgo . i l`a t´ıch phˆan ba ’ ng) sau d ˆay: 6Chu . o . ng 10. T´ıch phˆan bˆa ´ td i . nh I.  0.dx = C. II.  1dx = x + C. III.  x α dx = x α+1 α +1 + C, α = −1 IV.  dx x =ln|x|+ C, x =0. V.  a x dx = a x lna + C (0 <a= 1);  e x dx = e x + C. VI.  sin xdx = −cos x + C. VII.  cos xdx = sinx + C. VIII.  dx cos 2 x =tgx + C, x = π 2 + nπ, n ∈ Z. IX.  dx sin 2 x = −cotgx + C, x = nπ, n ∈ Z. X.  dx √ 1 −x 2 =    arc sin x + C, −arc cos x + C −1 <x<1. XI.  dx 1+x 2 =    arctgx + C, −arccotgx + C. XII.  dx √ x 2 ± 1 =ln|x + √ x 2 ± 1|+ C (trong tru . `o . ng ho . . pdˆa ´ utr`u . th`ı x<−1 ho˘a . c x>1). XIII.  dx 1 −x 2 = 1 2 ln    1+x 1 −x    + C, |x|=1. C´ac quy t˘a ´ c t´ınh t´ıch phˆan bˆa ´ td i . nh: 10.1. C´ac phu . o . ng ph´ap t´ınh t´ıch phˆan 7 1)  kf(x)dx = k  f(x)dx, k =0. 2)  [f(x) ± g(x)]dx =  f(x)dx ±  g(x)dx. 3) Nˆe ´ u  f(x)dx = F (x)+C v`a u = ϕ(x) kha ’ vi liˆen tu . cth`ı  f(u)du = F (u)+C. C ´ AC V ´ IDU . V´ı du . 1. Ch´u . ng minh r˘a ` ng h`am y = signx c´o nguyˆen h`am trˆen khoa ’ ng bˆa ´ tk`y khˆong ch´u . ad iˆe ’ m x = 0 v`a khˆong c´o nguyˆen h`am trˆen mo . i khoa ’ ng ch´u . ad iˆe ’ m x =0. Gia ’ i. 1) Trˆen khoa ’ ng bˆa ´ t k`y khˆong ch´u . ad iˆe ’ m x = 0 h`am y = signx l`a h˘a ` ng sˆo ´ . Ch˘a ’ ng ha . nv´o . imo . i khoa ’ ng (a, b), 0 <a<bta c´o signx =1 v`a do d ´omo . i nguyˆen h`am cu ’ a n´o trˆen (a, b) c´o da . ng F (x)=x + C, C ∈ R. 2) Ta x´et khoa ’ ng (a, b)m`aa<0 <b. Trˆen khoa ’ ng (a, 0) mo . i nguyˆen h`am cu ’ a signx c´o da . ng F(x)=−x+C 1 c`on trˆen khoa ’ ng (0,b) nguyˆen h`am c´o da . ng F (x)=x + C 2 .V´o . imo . i c´ach cho . nh˘a ` ng sˆo ´ C 1 v`a C 2 ta thu du . o . . c h`am [trˆen (a, b)] khˆong c´o d a . o h`am ta . idiˆe ’ m x =0. Nˆe ´ u ta cho . n C = C 1 = C 2 th`ı thu du . o . . c h`am liˆen tu . c y = |x| + C nhu . ng khˆong kha ’ vi ta . id iˆe ’ m x =0. T`u . d ´o, theo di . nh ngh˜ıa 1 h`am signx khˆong c´o nguyˆen h`am trˆen (a, b), a<0 <b.  V´ı du . 2. T`ım nguyˆen h`am cu ’ a h`am f(x)=e |x| trˆen to`an tru . csˆo ´ . Gia ’ i. V´o . i x  0 ta c´o e |x| = e x v`a do d´o trong miˆe ` n x>0mˆo . t trong c´ac nguyˆen h`am l`a e x . Khi x<0 ta c´o e |x| = e −x v`a do vˆa . y trong miˆe ` n x<0mˆo . t trong c´ac nguyˆen h`am l`a −e −x + C v´o . ih˘a ` ng sˆo ´ C bˆa ´ tk`y. Theo d i . nh ngh˜ıa, nguyˆen h`am cu ’ a h`am e |x| pha ’ i liˆen tu . cnˆenn´o 8Chu . o . ng 10. T´ıch phˆan bˆa ´ td i . nh pha ’ i tho ’ am˜andiˆe ` ukiˆe . n lim x→0+0 e x = lim x→0−0 (−e −x + C) t´u . cl`a1=−1+C ⇒ C =2. Nhu . vˆa . y F (x)=          e x nˆe ´ u x>0, 1nˆe ´ u x =0, −e −x +2 nˆe ´ u x<0 l`a h`am liˆen tu . c trˆen to`an tru . csˆo ´ .Tach´u . ng minh r˘a ` ng F(x) l`a nguyˆen h`am cu ’ a h`am e |x| trˆen to`an tru . csˆo ´ . Thˆa . tvˆa . y, v´o . i x>0 ta c´o F  (x)=e x = e |x| ,v´o . i x<0th`ıF  (x)=e −x = e |x| . Ta c`on cˆa ` n pha ’ i ch´u . ng minh r˘a ` ng F  (0) = e 0 = 1. Ta c´o F  + (0) = lim x→0+0 F (x) −F (0) x = lim x→0+0 e x − 1 x =1, F  − (0) = lim x→0−0 F (x) −F (0) x = lim x→0−0 −e −x +2− 1 x =1. Nhu . vˆa . y F  + (0) = F  − (0) = F  (0) = 1 = e |x| .T`u . d ´o c ´o t h ˆe ’ viˆe ´ t:  e |x| dx = F(x)+C =    e x + C, x < 0 −e −x +2+C, x < 0.  V´ı du . 3. T`ım nguyˆen h`am c´o d ˆo ` thi . qua diˆe ’ m(−2,2) dˆo ´ iv´o . i h`am f(x)= 1 x , x ∈ (−∞, 0). Gia ’ i. V`ı (ln|x|)  = 1 x nˆen ln|x| l`a mˆo . t trong c´ac nguyˆen h`am cu ’ a h`am f(x)= 1 x . Do vˆa . y, nguyˆen h`am cu ’ a f l`a h`am F (x)=ln|x|+ C, C ∈ R.H˘a ` ng sˆo ´ C d u . o . . cx´acd i . nh t`u . d iˆe ` ukiˆe . n F (−2) = 2, t´u . cl`a ln2 + C =2⇒ C =2−ln2. Nhu . vˆa . y F (x)=ln|x|+2− ln2 = ln    x 2    +2.  10.1. C´ac phu . o . ng ph´ap t´ınh t´ıch phˆan 9 V´ı du . 4. T´ınh c´ac t´ıch phˆan sau dˆay: 1)  2 x+1 −5 x−1 10 x dx, 2)  2x +3 3x +2 dx. Gia ’ i. 1) Ta c´o I =   2 2 x 10 x − 5 x 5 ·10 x  dx =   2  1 5  x − 1 5  1 2  x  dx =2   1 5  x dx − 1 5   1 2  x dx =2  1 5  x ln  1 5  − 1 5  1 2  x ln 1 2 + C = − 2 5 x ln5 + 1 5 ·2 x ln2 + C. 2) I =  2  x + 3 2  3  x + 2 3  dx = 2 3  x + 2 3  + 5 6   x + 2 3  dx = 2 3 x + 5 9 ln    x + 2 3    + C.  V´ı du . 5. T´ınh c´ac t´ıch phˆan sau d ˆay: 1)  tg 2 xdx, 2)  1 + cos 2 x 1 + cos 2x dx, 3)  √ 1 −sin 2xdx. Gia ’ i. 1)  tg 2 xdx =  sin 2 x cos 2 x dx =  1 −cos 2 x cos 2 x dx =  dx cos 2 x −  dx =tgx − x + C. [...]... + 2 23 ´ ıch a a Chu.o.ng 10 T´ phˆn bˆt dinh 24 ´ Cuˆi c`ng ta thu du.o.c o u √ I = xarc cos2 x − 2 1 − x2arc cos x − 2x + C V´ du 3 T´ I = ı ınh x2 sin 3xdx ’ Giai T´ phˆn d˜ cho thuˆc nh´m II Ta d˘t ıch a a o o a u(x) = x2, dv = sin 3xdx 1 Khi d´ du = 2xdx, v = − cos 3x v` a o 3 1 1 2 2 I = − x2 cos 3x + x cos 3xdx = − x2 cos 3x + I1 3 3 3 3 ` ınh a o Ta cˆn t´ I1 D˘t u = x, dv = cos 3xdx Khi... cos 3x + x cos 3xdx = − x2 cos 3x + I1 3 3 3 3 ` ınh a o Ta cˆn t´ I1 D˘t u = x, dv = cos 3xdx Khi d´ du = 1dx, a 1 u o v = sin 3x T` d´ 3 1 1 2 1 x sin 3x − sin 3xdx I = − x2 cos 3x + 3 3 3 3 2 2 1 cos 3x + C = − x2 cos 3x + x sin 3x + 3 9 27 ´ Nhˆn x´t Nˆu d˘t u = sin 3x, dv = x2dx th` lˆn t´ phˆn t`.ng a e e a ı ` ıch a u a ´ ` ´ ’ phˆn th´ nhˆt khˆng du.a dˆn t´ phˆn do.n gian ho.n a u a o e... o u 3 1 3x + 1 + arctgx + C I = ln |x| − ln(1 + x2 ) + 2 2(1 + x2) 2 ` ˆ BAI TAP T´ c´c t´ phˆn (1-12) ınh a ıch a 1 xdx (x + 1)(x + 2)(x − 3) (DS 2 2x4 + 5x2 − 2 dx 2x3 − x − 1 DS 3 x2 + ln |x − 1| + ln(2x2 + 2x + 1) + arctg(2x + 1)) 2 2x3 + x2 + 5x + 1 dx (x2 + 3) (x2 − x + 1) DS 4 2 3 1 ln |x + 1| − ln |x + 2| + |x − 3| ) 4 5 20 x 2x − 1 1 2 √ arctg √ + ln(x2 − x + 1) + √ arctg √ ) 3 3 3 3 x4 +... (DS 10 2x − 1 1 2x − 1 − √ arctg √ ) − 3 x2 − x + 1 3 3 3 x−1 x ln x4 − x2 + 1 dx (x2 − 1)(x2 + 4)(x2 − 2) 6 (DS √ x−1 7 x 1 x− 2 1 √ ) ln + arctg + √ ln − 10 x+1 20 2 4 2 x+ 2 3x2 + 5x + 12 dx (x2 + 3) (x2 + 1) 7 √ x 5 5 9 3 2 arctg √ + ln(x2 + 1) + arctgx) − ln(x + 3) − 4 2 2 3 4 (DS 8 (x4 + 1)dx x5 + x4 − x3 − x2 (DS 9 ln |x| + x3 + x + 1 dx x4 − 1 (DS 10 1 1 3 ln |x − 1| + ln |x + 1| − arctgx) 4... bˆt dinh 12 22 23 24 sin x cos x 3 − sin4 x 1 sin2 x (DS arc sin √ ) 2 3 dx 1 arccotg3x dx (DS − arccotg2 3x) 2 1 + 9x 6 √ 1 1 x + arctg2x dx (DS ln(1 + 4x2) + arctg3/22x) 1 + 4x2 8 3 arc sin x − arc cos x √ dx 1 − x2 26 x + arc sin3 2x √ dx 1 − 4x2 27 x + arc cos3/2 x √ dx 1 − x2 28 x|x|dx 29 (DS 1 (arc sin2 x + arc cos2 x)) 2 (DS − 25 1√ 1 1 − 4x2 + arc sin4 2x) 4 8 (2x − 3) |x − 2|dx 30 (DS √ 2 (DS... (x3 + 1) ln(x + 1) x3 x2 x − + − ) 3 9 6 3 x 1 − 2x2 cos 2x + sin 2x) 4 2 (DS (DS 2x + x − cos x ln(tgx)) 2 1 (2x2 sin 2x2 + cos 2x2)) 8 (DS e3x (sin 2x − 5 cos 2x)) 13 21 sin 5x + 29 (DS − 5x + 20 cos 5x ) 29 1 2 (x − 1) sin x − (x − 1)2 cos x ex) 2 ´ ıch a a Chu.o.ng 10 T´ phˆn bˆt dinh 30 2 x 30 x e cos xdx (x − 1)2 sin x + (x2 − 1) cos x x e ) (DS 2 [3 sin x(ln x) − cos(ln x)]x3 ) 10 ˜ ` o o 32 ... √ √ (DS 2( x − 1 − xarc sin x)) (DS x(ln x − 1)) 8 2 3/ 2 4 x ) ln2 x − ln x + 3 3 9 √ √ √ ln(x + 16 + x2)dsx (DS x ln(x + 16 + x2) − 16 + x2 ) (DS 20 √ x ln(x + 1 + x2) √ dx 1 + x2 21 sin x ln(tgx)dx 22 x2 ln(1 + x)dx 23 x2 sin 2xdx 24 x3 cos(2x2)dx 25 ex sin xdx (DS ex (sin x − cos x) ) 2 26 3x cos xdx (DS sin x + (ln 3) cos x x 3 ) 1 + ln2 3 27 e3x(sin 2x − cos 2x)dx 28 xe2x sin 5xdx (DS 29 e2x 29... Chı dˆ n D˘t x = a cos 2t 33 x − 1 dx x + 1 x2 1 (DS arc cos − x 1 ˜ ’ a Chı dˆ n D˘t x = a t √ dx √ 34 (DS 2arc sin x) x − x2 √ x2 − 1 ) x a ınh ıch a 10.1 C´c phu.o.ng ph´p t´ t´ phˆn a 21 ˜ ’ a Chı dˆ n D˘t x = sin2 t a √ √ √ 1 + x2 + 1 x2 + 1 dx (DS x2 + 1 − ln ) 35 x x 36 x3dx √ 2 − x2 (9 − x2)2 dx x6 37 38 (DS − x2dx √ x2 − a2 (DS x2 √ 4√ 2 − x2 − 2 − x2) 3 3 (DS − (9 − x2 )5 ) 45x5 √... Giai T´ phˆn d˜ cho thuˆc nh´m I Ta d˘t ıch a a o o a √ u(x) = arctg x, √ dv = xdx Khi d´ du = o dx 2 3 1 · √ , v = x 2 Do d´ o 1+x 2 x 3 √ 1 2 3 x dx I = x 2 arctg x − 3 3 1+x √ 1 1 2 3 1− dx = x 2 arctg x − 3 3 1+x √ 2 3 1 = x 2 arctg x − (x − ln|1 + x|) + C 3 3 V´ du 2 T´ I = arc cos2 xdx ı ınh ’ ’ ’ o Giai Gia su u = arc cos2 x, dv = dx Khi d´ 2arc cos x du = − √ dx, v = x 1 − x2 Theo (10.4*)... dinh 28 1 x2x dx 2 x2 e−x dx 3 x3 e−x dx 4 (x3 + x)e5xdx 5 arc sin xdx 6 xarc sin xdx 7 x2 arc sin 2xdx 8 arctgxdx 9 √ arctg xdx (DS 2x (x ln 2 − 1) ) ln2 2 (DS −x2e−x − 2xe−x − 2e−x ) 1 2 (DS − (x2 + 1)e−x ) 2 2 (DS 31 1 5x 3 3 2 31 e x − x + x− ) 5 5 25 125 (DS xarc sin x + (DS √ 1 − x2 ) 1 1 √ (2x2 − 1)arc sin x + x 1 − x2) 4 4 (DS 2x2 + 1 √ x3 arc sin 2x + 1 − 4x2) 3 36 (DS xarctgx − 1 ln(1 + x2)) . 192 13. 3 Chuˆo ˜ il˜uy th`u . a 199 13. 3.1 C´ac d i . nh ngh˜ıa co . ba ’ n 199 13. 3.2 D - iˆe ` ukiˆe . n khai triˆe ’ nv`aphu . o . ng ph´ap khai triˆe ’ n 201 13. 4 Chuˆo ˜ iFourier 211 13. 4.1. − 2 5 x ln5 + 1 5 ·2 x ln2 + C. 2) I =  2  x + 3 2  3  x + 2 3  dx = 2 3  x + 2 3  + 5 6   x + 2 3  dx = 2 3 x + 5 9 ln    x + 2 3    + C.  V´ı du . 5. T´ınh c´ac t´ıch phˆan. du . ´o . ida . ng f(x)=− 3 2 · −2x +6 √ −x 2 +6x −8 + 13 1 √ −x 2 +6x −8 v`a thu d u . o . . c I 2 =  f(x)dx = − 3 2  (−x 2 +6x −8) − 1 2 d(−x 2 +6x −8) + 13  d(x 3)  1 −(x 3) 2 = 3 √ −x 2 +6x −8 + 13 arc

Ngày đăng: 27/06/2014, 03:20

TỪ KHÓA LIÊN QUAN