Phn g phpi mgnkv m tsc ibin
Phn g phpci ngiibiton(1.1)lp h n g phpi mgn k.Phn g phpnyc x u tu tinbiMartinet[1]vonm1970 ltmnghimcabitoncctiu: minf(x), (1.2) x∈H vi f: H→ (−∞,
+∞]lh mli,chnhthng,nalintcdi,thamnmitpmc{x∈H: f(x)≤α}, α∈ Rlgi ini.
1 Φ k (x)=f (x)+ ∥x−x k ∥ 2 vi{c} ldysthcdn g Tuy nhindy x k chhity utimtnghimcabiton(1.2).
[1]chotrn g hptont Tl n i ucci T cgi x u tphn g phpi mgnkv idy x k chobi: x k+1 =J k x k +e k hoc x k+1 = J k (x k +e k ),k≥1 , (1.4) x 1 ∈ H , J k = (I+r k T) −1 ltontgiica T ,
∥x k+1 −J k x k ∥≤ε k vi ε k