1. Trang chủ
  2. » Giáo án - Bài giảng

Toan9 tanson gv deda matran quyen le

9 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 235,42 KB

Nội dung

MA TRẬN ĐỀ KIỂM TRA ĐÁNH GIÁ CUỐI KỲ I – TOÁN (2022-2023) S T T NỘI DUNG KIẾN THỨC I Căn bậc hai II Hàm số bậc III Hệ thức lượng tam giác vng IV Đường trịn CÂU HỎI THEO MỨC ĐỘ NHẬN THỨC ĐƠN VỊ KIẾN THỨC I.1 Biến đổi đơn giản biểu thức chứa (Biểu thức số) I.2 Rút gọn biểu thức chứa (Biểu thức số) II.1 Đồ thị hàm số bậc II.2 Xác định tọa độ giao điểm đường thẳng II.3 Xác định hàm số bậc nhất; tính giá trị hàm số (Tốn thực tế) III HTL tam giác vng ứng dụng (Tốn thực tế) IV.1 Quan hệ đường kính dây IV.2 Tính chất tiếp tuyến; Dấu hiệu nhận biết tiếp tuyến IV.3 Tính chất hai tiếp tuyến cắt Tổng Tỉ lệ % Tổng điểm Nhận biết Thời Ch gian TL (phút) 0,5đ Thông hiểu Thời Ch gian TL (phút) Vận dụng Thời Ch gian TL (phút) Vận dụng cao Thời Ch gian TL (phút) 3p 1,0đ 1,5đ 4p 8p 0,5đ 0,75đ 5p 1,25đ 10p 36.4 TỈ LỆ 3p 3.3 4p 4.4 8p 8.9 5p 5.6 % 15p 15p 16.7 0,75đ 5p 10p 11.1 10p 11.1 15p 16.7 20p 20p 22.2 20p 11 100 10 90p 100 100 0,75đ 26p Tổng thời gian 1,5đ ½ 5p tổng số câu 3½ 10p 30p 31.8 ½ 5p 0,5đ 2½ 14p 22.7 1,0đ 9.1 1 BẢN ĐIỀU CHỈNH ĐẶC TẢ PHÙ HỢP VỚI MA TRẬN ĐỀ KIỂM TRA ĐÁNH GIÁ CUỐI KỲ I TOÁN (2022-2022) TT S Nội dung kiến thức I.1 Biến đổi đơn giản biểu thức chứa (Biểu thức số) Chuẩn kiến thức kỹ cần kiểm tra Nhận biết Thông hiểu Vận dụng Vận dụng cao II.1 Đồ thị hàm số bậc Nhận biết: Thực vẽ đường thẳng biểu diễn đồ thị hàm số bậc với hệ số nguyên II.2 Xác định tọa độ giao điểm đường thẳng Vận dụng: Thực bước tìm tọa độ giao điểm hai đường thẳng phép tốn II.3 Xác định hàm số bậc nhất; tính giá trị hàm số (Tốn thực tế) Thơng hiểu: Từ toán thực tiễn xác định quan hệ hai đại lượng hàm số bậc nhất; tính giá trị hàm số III Hệ thức lượng tam giác vuông III HTL tam giác vuông ứng dụng (Tốn thực tế) Nhận biết + Thơng hiểu: Thơng qua kiến thức thực toán xác định khoảng cách, chiều cao cách gián tiếp; tính số đo góc …dạng 1 IV Đường trịn IV.1 Quan hệ đường kính dây IV.2 Tính chất tiếp tuyến; Dấu hiệu nhận biết tiếp tuyến IV.3 Tính chất hai tiếp tuyến cắt Nhận biết: Tiếp tuyến, tính chất tiếp tuyến … Thông hiểu + Vận dụng: Chứng minh đồng dạng, chứng minh hệ thức… Vận dụng cao: Khai thác mở rộng vấn đế có liên quan ½ ½ 3½ 2½ II Hàm số bậc Đơn vị kiến thức Nhận biết: Biến đổi đơn giản số bậc hai rút gọn biểu thức chứa bậc hai dạng Vận dụng: Vận dụng phép biến đổi, HĐT đáng nhớ, thực phép tính rút gọn biểu thức I Căn bậc hai Số câu hỏi theo mức độ nhận thức Tổng I.2 Rút gọn biểu thức chứa (Biểu thức số) 1 2 PHÒNG GD VÀ ĐT GÒ VẤP TRƯỜNG THCS TÂN SƠN ĐỀ CHÍNH THỨC (Đề gồm có hai trang) ĐỀ KIỂM TRA CUỐI HỌC KÌ I NĂM HỌC 2022 - 2023 Mơn: TỐN - LỚP Ngày kiểm tra: 23/12/2022 Thời gian làm bài: 90 phút (không kể thời gian phát đề) (Lưu ý: Học sinh làm giấy thi) ĐỀ BÀI: Bài 1: (1,5 điểm) Thực phép tính: a) 27  75  48 b)   3 31 Bài 2: (2,0 điểm) Cho hàm số y = x có đồ thị (d1) hàm số y = - 2x + có đồ thị (d2) a) Vẽ mặt phẳng tọa độ Oxy đồ thị hai hàm số b) Tìm tọa độ giao điểm M (d1) (d2) phép toán Bài 3: (1,5 điểm) Một máy bay cất cánh sân bay Tân Sơn Nhất ( vị trí gốc tọa độ O) bay theo đường thẳng hợp với mặt đất Ox góc 300 có phương trình y = ax + b với a, b số Gọi y (m) độ cao so với mặt đất, x (phút) thời gian bay có đồ thị hình vẽ Hình (Lưu ý: Học sinh khơng cần vẽ hình) y (mét) Hình 8000 O x (phút) a) Hãy xác định hệ số a b b) Sau phút máy bay đạt độ cao 40km? Bài 4: (1,5 điểm) Chú mèo bạn Nam bị thương, nằm cao nên Nam dùng thang trèo lên để đưa mèo xuống bạn Nam dựng thang dài 3m vào tường cho thang tạo với mặt đất góc 650 a) Hỏi chân thang cách tường mét? (kết làm tròn đến mét) b) Nếu thang dài mét Nam muốn dựng vào tường cho độ cao đạt độ cao thang thứ nhất, thang thứ cần tạo với mặt đất góc độ? (Làm trịn kết đến độ.) Bài 5: (3,5 điểm) Từ điểm A ngồi đường trịn (O) cho trước, kẻ hai tiếp tuyến AB; AC với đường tròn (O) (B C tiếp điểm) a) Chứng minh: OA vng góc với BC H điểm A, B, O, C thuộc đường trịn b) Vẽ đường kính BQ (O), AQ cắt (O) P Chứng minh: AB = AP AQ   PQC PCA c) Trên OB lấy điểm N cho BN = 2ON Đường trung trực CN cắt OA M Chứng minh: OA = 3AM -HẾT- HƯỚNG DẪN CHẤM TOÁN HK1 NĂM HỌC 2022-2023 Bài 1: (1,5 điểm) a) 27  75  48 = 3 34 0,25 =2 0,25  3 b) 3 =  3 = 3 =  2 3 31 3     31 3 0,25+0,25 0,25 0,25 Bài 2: (2,0 điểm) a) Mỗi BGT Mỗi đồ thị vẽ b) Viết PTHĐGĐ Tìm hồnh độ GĐ Tìm tung độ GĐ Kết luận tọa độ GĐ Bài 3: (1,5 điểm) 0,25 0,5 0,25 0,25 a) Vì đồ thị hàm số y = ax + b qua gốc tọa độ nên => b = (1) Vì đồ thị hàm số y = ax + b qua điểm có tọa độ (1 ; 8000) => 8000 = 1.a + b (2) (1) & (2) => a = 8000 Vậy a = 800; b = b) Ta có: y = 8000x Theo đề ta có y = 40km = 40 000m => 40000 = 8000x => x = 40000 : 8000 = Vậy sau phút máy bay đạt độ cao 40km 0,25 0,25 0,25 0,25 0,25 0,25 A Bài 4: (1,5 điểm) C a) Tam giác ABC vng C, ta có D B cosB= => BC AB 0,25 cos650 = BC 0,25 => BC 3.cos65 0,25 => BC ≈ 1,267854786 ≈ 1(m) Vậy chân thang cách tường khoảng mét b)Xét ∆ABC vuông C: AC  BA.sin B 3sin 650 Gọi chiều dài thang thứ CD, ta có ∆ADC vng C => sin D   0,25 0,25 3sin 650 => D 43 Bài 5: (3,5 điểm) 0,25 a) Chứng minh OA vng góc với BC H điểm A, B, O, C thuộc đường tròn Xét(O), ta có AB = AC ( Tính chất hai tiếp tuyến cắt nhau) OB = OC ( =bán kính (O)) => A O thuộcđường trung trực đoạn BC => AO đường trung trực đoạn BC => AO ┴ BC H ∆BAO vuông B => B, A, O thuộc đường trịn đường kính AO ∆CAO vuông C 0,25 0,25 0,25 (1) 0,25 => C, A, O thuộc đường trịn đường kính AO (2) Từ (1) (2) suy điểm A, B, O, C cịng thuộc đường trịn đường kính AO  0,25  b) Chứng minh: AB2 = AP AQ PQC PCA Ta có ∆BPQ nội tiếp đường trịn đường kính BQ =>∆BPQ vng P => BP  AQ P Xét ∆BAQ vuông B, đường cao BP, ta có AB2 = AP AQ Ta có AB = AC ( cmt) AB2 = AP AQ Nên AC2 = AP AQ AC AQ   AP AC 0,25 0,25 0,25 0,25 Xét ∆APC ∆ACQ, có  QAC chung AC AQ  AP AC (cmt) Nên ∆APC đồng dạng ∆ACQ   PCA  PQC ( góc tương ứng) 0,25 Chứng minh OA = 3AM Ta có MN = MC ( M thuộc đường trung trực NC) MB = MC ( M thuộc đường trung trực BC) Nên MN =MB = MC =>∆MBN cân M Gọi I trung điểm NB =>MI trung tuyến đồng thời đường cao ∆MBN => MI  NB Mà AB  NB Nên MI // AB ∆BOA có MI // AB  0,25 0,25 IB AM  OB AO ( Talet) Lại có IB  OB AM  AO Nên  OA 3OM 0,25 0,25 Lưu ý: HS giải cách khác chấm theo mốc thang điểm

Ngày đăng: 10/08/2023, 05:20

w