1. Trang chủ
  2. » Giáo án - Bài giảng

187 đề hsg toán 8 tp bắc ninh 22 23

6 75 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 207,29 KB

Nội dung

111Equation Chapter Section 1UBND THÀNH PHỐ BẮC NINH PHÒNG GIÁO DỤC VÀ ĐÀO TẠO KỲ THI CHỌN HỌC SINH GIỎI CẤP THÀNH PHỐ NĂM HỌC 2022-2023 Mơn : Tốn ĐỀ CHÍNH THỨC 1  x  x P    : 2   x 1  x  x  x  Câu (4,0 điểm) Cho biểu thức a) Tìm điều kiện xác định rút gọn P b) Tìm tất giá trị nguyên x để biểu thức P nhận giá trị nguyên Với x  , tìm giá trị nhỏ P Câu (4,0 điểm) 1 1 ;    2021 2021 a b c Tính giá trị biểu 1   A a 2021  b 2021  c 2021  2021  2021  2021  b c  a thức 1) Cho số a, b, c khác ; 2) x Giải phương trình :  a  b c   1  x  x  1  x 0 Câu (4,0 điểm) 1) Cho hai số nguyên a, b thỏa mãn đồng thời diều kiện : a  b số nguyên chẵn 2 2 4a  3ab  11b chia hết cho Chứng minh a  b chia hết cho 20 2) Cho đa thức f  x  x  Giả sử đa thức P  x  x  ax  b có nghiệm x1 ; x2 ; x3 ; x4 ; x5 Tìm giá trị nhỏ A  f  x1  f  x2  f  x3  f  x4  f  x5  x  1  y  z 0 3) Tìm số tự nhiên x, y , z khác thỏa mãn  x  y  z  số nguyên tố Câu 4.(7,0 điểm) Cho hình vng ABCD tâm O, lấy M đoạn OC, không trùng O Gọi S điểm đối xứng với B qua M, đường thẳng BS cắt CD L Gọi E giao điểm DM với BC, F giao điểm AE CD, G giao điểm DE BF Gọi I K theo thứ tự giao điểm AB CG DG Chứng minh a) b) c) d) SL DS  BL BD IE song song với BD AE vng góc với CG DL.BS BD.DS Câu (1,0 điểm) Cho 40 số nguyên dương a1 ; a2 ; ; a19 b1 ; b2 ; .; b21 thỏa mãn điều kiện sau : a1  a2   a19 200, b1  b2   b21 200 Chứng minh tồn bốn số ; a j ; bk ; b p  i, j 19;1 k , p 21 cho  a j , bk  b p a j  bp  bk ĐÁP ÁN 1  x  x P    : 2  x  1  x  x x 1   Câu (4,0 điểm) Cho biểu thức c) Tìm điều kiện xác định rút gọn P ĐK : x 1; x 2 1  x  x   x     x  1 x2   x P    :    x2 x  x 1  x  x  x   x2 x2  x2    x2 x  x  x2 P x Vậy d) Tìm tất giá trị nguyên x để biểu thức P nhận giá trị nguyên Với x  , tìm giá trị nhỏ P x2 P x   x x Vì x nguyên nên để P nguyên  x   U    1; 2; 4 hay x   1;3;0; 4;  2;6 thỏa x  x  16   x  16  x    x2 P    8 x x x Ta lại có với x  Vậy giá trị nhỏ P x=4 Câu (4,0 điểm) 1 1 ;    2021 2021 a b c Tính giá trị biểu 1   A a 2021  b 2021  c 2021  2021  2021  2021  b c  a thức 3) Cho số a, b, c khác ; a  b c  1 1 1 1 &   2021     2021 a b c a b c a b  c a b a b  c c ac  bc  c  ab   0   a  b  0 ab c  a  b  c  abc  a  b  c  a b  c   a  b 0   a  b   b  c   a  c  0   b  c 0  A 1  a  c 0 4) x x Giải phương trình :  2  1  x  x  1  x 0 2  1  x  x  1  x 0    x  1  x  x  1    x  x  1  x  0     x  1  x   x   x  x   x  0   x  x  1  x  x  1 0   x  1 0(do x  x   0)  x  Câu (4,0 điểm) 4) Cho hai số nguyên a, b thỏa mãn đồng thời diều kiện : a  b số nguyên 2 2 chẵn 4a  3ab  11b chia hết cho Chứng minh a  b chia hết cho 20 a  b 4  1 Vì a-b số chẵn nên a  b chẵn , suy 2 2  5a  5ab  10b    4a  3ab  11b  5 Vì 4a  3ab  11b 5 5a  5ab  10b 5  a  b  5   a  b  5  a  b 5   Hay   4;5 1 nên từ (1) (2) suy a  b 20 f x x  P x x  ax  b 5) Cho đa thức   Giả sử đa thức   có nghiệm x1 ; x2 ; x3 ; x4 ; x5 Tìm giá trị nhỏ A  f  x1  f  x2  f  x3  f  x4  f  x5  P x x  ax  b Vì đa thức   có nghiệm x1 ; x2 ; x3 ; x4 ; x5 nên : P  x   x  x1   x  x2   x  x3   x  x4   x  x5  f x x   x    x   A  f  x1  f  x2  f  x3  f  x4  f  x5  Ta có   nên  x1    x1    x2    x2    x3    x3    x4    x4    x5    x5     x1    x2    x3    x4    x5    x1    x2    x3    x4    x5  P   P( 2)  32  4a  b    32  4a  b   4a  b   1024  1024  A  f  x1  f  x2  f  x3  f  x4  f  x5   1024 Min A  1024  4a  b 0 x  1  y  z 0  x , y , z 6) Tìm số tự nhiên khác thỏa mãn x  y  z  Do số nguyên tố  x  1  x  1 3  y  z 0  *   x  1  y  z 3z 3  1 Ta có :  y  z   x  y  z  1   x  1   x  1    y  y    z  z  3     Từ (1) (2) suy x  y  z  13 mà x  y  z  số nguyên tố nên x  y  z  3  x  y  z 4 Th1: x 2; y z 1 (tm(*)) Th : x  y 1; z 2(ktm(*)) Th3 : x  z 1; y 2(ktm(*)) Vậy x 2; y z 1 Câu 4.(7,0 điểm) Cho hình vng ABCD tâm O, lấy M đoạn OC, không trùng O Gọi S điểm đối xứng với B qua M, đường thẳng BS cắt CD L Gọi E giao điểm DM với BC, F giao điểm AE CD, G giao điểm DE BF Gọi I K theo thứ tự giao điểm AB CG DG Chứng minh I B A O M D L H S E C K G F SL DS  e) BL BD Do O trung điểm BD, M trung điểm SB nên OM đường trung bình tam giác BDS  OM / / DS Mà OM  BD  DS  BD  BDS vuông D SL DS  BDL   BDL 45 BL BD Mà nên DL phân giác f) IE song song với BD IK KE  Ta chứng minh IB ED Do BK//DF nên theo định lý Talet ta có : IK IG IB IK CD     1 CD GC CF suy BF CF KE BE AB    2 Cũng theo định lý Talet với AK / / DF , ta có : ED EC CF IK KE AB CD   1 ,     IB ED Ta lại có Theo định lý Talet đảo ta có IE // BD g) AE vng góc với CG Ta có BD  AC , IE / / BD  IE  AC Tam giác ACI có CB  AI , IE  AC nên E trực tâm tam giác ACI Suy AE  CG h) DL.BS BD.DS Kẻ DH  BS H Ta có 2.S BDS BD.DS BS DH  1 BS DL BS DH   Lại có DL DH (quan hệ đường xiên, đường vng góc) nên Từ (1) (2) suy DL.BS BD.DS Dấu xảy M trùng C Câu (1,0 điểm) Cho 40 số nguyên dương a1 ; a2 ; ; a19 b1 ; b2 ; .; b21 thỏa mãn điều kiện sau : a1  a2   a19 200, b1  b2   b21 200 Chứng minh tồn bốn số ; a j ; bk ; b p  i, j 19;1 k , p 21 cho  a j , bk  bp a j  bp  bk m   1; 2; ;19 n   1; 2; ; 21 Xét tổng có dạng : am  bn với và Ta thấy có 19.21 399 tổng tổng nhận giá trị nguyên từ đến 400 (có 399 giá trị) Th1: Trong 399 tổng khơng có tổng 399 tổng nhận đủ giá trị từ đến 400 Suy tổng nhỏ tổng lớn 400 a b 200  a19  a1 b21  b1  1 Khi a1  b1 2 a19  b21 400  a1 b1 1 19 21 a b Th2: tổng có tổng , giả sử  bk i p a j  bk ai  bp  a j  bp  bk   Từ (1) (2) ta có đpcm

Ngày đăng: 10/08/2023, 04:16

TỪ KHÓA LIÊN QUAN

w