1. Trang chủ
  2. » Luận Văn - Báo Cáo

Tìm hiểu về mpls vpn ứng dụng trên megawan và cài đặt thực nghiệm

73 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 73
Dung lượng 5,1 MB

Cấu trúc

  • 1. Tính cấp thiết của đề tài (10)
  • 2. Mục tiêu của đề tài (10)
  • 3. Ý nghĩa thực tiễn của đề tài (11)
  • CHƯƠNG 1 GIỚI THIỆU VỀ CÔNG NGHỆ VPN (10)
    • 1.1. VPN là gì? (12)
    • 1.2. PHÂN LOẠI VPN (12)
      • 1.2.1 VPN cho các nhà doanh nghiệp (12)
        • 1.2.1.1 Remote access VPN (12)
      • 1.2.2 VPN đối với các nhà cung cấp dịch vụ (14)
    • 1.3 Tổng kết chương 1 (16)
  • CHƯƠNG 2 CHUYỂN MẠCH NHÃN ĐA GIAO THỨC – MPLS (11)
    • 2.1 Sơ lược về công nghệ IP và công nghệ ATM (0)
      • 2.1.1 Công nghệ IP (18)
      • 2.1.2 Công nghệ ATM (18)
    • 2.2 Khái niệm cơ bản về MPLS (19)
      • 2.2.1 Lợi ích của MPLS (20)
      • 2.2.2 Một số ứng dụng của MPLS (20)
    • 2.3 Các thành phần trong MPLS (21)
      • 2.3.1 Nhãn (21)
      • 2.3.2 Ngăn xếp nhãn (22)
      • 2.3.3 Lớp chuyển tiếp tương đương FEC (23)
      • 2.3.4 Đường chuyển mạch nhãn LSP (23)
      • 2.3.5 Cơ sở dữ liệu nhãn LIB (23)
      • 2.3.6 Topo mạng MPLS (23)
      • 2.3.7 Thành phần cơ bản của MPLS (24)
    • 2.4 Giao thức phân phối nhãn LDP (25)
      • 2.4.1 Quá trình khám phá láng giềng LSR (25)
      • 2.4.2 Các kiểu phân phối nhãn (26)
    • 2.5 Cấu trúc MPLS (26)
      • 2.5.1 Mặt phẳng điều khiển (28)
      • 2.5.2 Mặt phẳng dữ liệu (29)
      • 2.5.3 Các thành phần bên trong mặt phẳng điều khiển và mặt phẳng dữ liệu (29)
    • 2.6 Các giao thức định tuyến trong MPLS (30)
      • 2.6.1 Giao thức định tuyến OSPF (30)
      • 2.6.2 Giao thức định tuyến EIGRP (31)
      • 2.6.3 Giao thức định tuyến BGP (31)
    • 2.7 Phương thức hoạt động của MPLS (32)
    • 2.8 Tổng kết chương 2 (37)
  • CHƯƠNG 3 MPLS VPN (11)
    • 3.1 MPLS VPN là gì? (38)
    • 3.2 Lợi ích của MPLS VPN (38)
    • 3.3 Các thành phần trong MPLS VPN (39)
      • 3.3.1 Virtual Routing and Forwarding Table (VRF) (39)
      • 3.3.2 Multiprotocol BGP (MP-BGP) (39)
      • 3.3.3 Route Distinguisher (RD) (40)
      • 3.3.4 Route Targets (RT) (41)
    • 3.5 Hoạt động của mặt phẳng điều khiển MPLS VPN (42)
    • 3.6 Hoạt động của mặt phẳng dữ liệu MPLS VPN (0)
    • 3.7 Vấn đề bảo mật trong MPLS/ VPN (44)
      • 3.7.1 Khoảng địa chỉ và định tuyến riêng biệt (44)
      • 3.7.2 Che giấu cấu trúc lõi của MPLS (45)
      • 3.7.3 Chống lại các cuộc tấn công (46)
      • 3.7.4 Giả nhãn (47)
    • 3.8 Tổng kết chương 3 (48)
  • CHƯƠNG 4 ỨNG DỤNG MPLS/VPN TRÊN MEGAWAN (11)
    • 4.1 Khái niệm chung về MegaWan (49)
    • 4.2. Các yêu cầu đặt ra khi thiết kế mạng MEGAWAN (49)
    • 4.3 Ứng dụng của MEGAWAN (50)
    • 4.4 Mô hình MEGAWAN thực tế (50)
      • 4.4.1 Gọi điện thoại miễn phí dựa trên hệ thống tổng đài nội bộ (52)
      • 4.4.2 Truyền hình hội nghị (53)
    • 4.5 Tổng kết chương 4 (54)
  • CHƯƠNG 5 BẢN DEMO CÀI ĐẶT THỰC NGHIỆM (11)
    • 5.1 Cấu hình (55)
      • 5.1.1 Cấu hình router A1 (55)
      • 5.1.2 Cấu hình router B1 (56)
      • 5.1.3 Cấu hình router PE01 (57)
      • 5.1.4 Cấu hình router P (59)
      • 5.1.5 Cấu hình router PE02 (60)
      • 5.1.6 Cấu hình router A2 (62)
      • 5.1.7 Cấu hình router B2 (63)
    • 5.2 Thông tin định tuyến (63)
      • 5.2.1 Thông tin định tuyến của A1 (63)
      • 5.2.2 Thông tin định tuyến của A2 (64)
      • 5.2.3 Thông tin định tuyến của B1 (64)
      • 5.2.4 Thông tin định tuyến của B2 (65)
      • 5.2.5 Thông tin định tuyến của PE01 (0)
      • 5.2.6 Thông tin định tuyến của PE02 (66)
      • 5.2.7 Thông tin định tuyến của P (66)
    • 5.3 Kiểm tra (67)
  • TÀI LIỆU THAM KHẢO (73)

Nội dung

Tính cấp thiết của đề tài

Ngày nay, công nghệ thông tin và viễn thông đang hội tụ sâu sắc và cùng đóng góp rất tích cực trong sự phát triển kinh tế, xã hội toàn cầu Không một doanh nghiệp, tổ chức thành đạt nào lại phủ nhận sự gắn bó giữa hệ thống thông tin và hiệu quả hoạt động sản xuất kinh doanh cũng như lộ trình phát triển của họ Từ nhu cầu truy cập dữ liệu của công ty từ xa, đến việc tạo mối quan hệ với khách hàng, giúp họ có thể khai thác một phần nguồn tài nguyên của mình mà vẫn đảm bảo tính bảo mật cần thiết cho thông tin VPN truyền thống dựa trên công nghệ ATM, Frame Relay và IP gặp không ít nhược điểm như khả năng quản lý, tính bảo mật, chất lượng dịch vụ Gần đây, công nghệ chuyển mạch nhãn đa giao thức - MPLS được các hãng cung cấp dịch vụ quan tâm đặc biệt bởi khả năng vượt trội trong việc cung cấp dịch vụ chất lượng cao qua mạng IP, bởi tính đơn giản, hiệu quả và quan trọng nhất là khả năng triển khai trên VPN Với ưu điểm chuyển tiếp lưu lượng nhanh, khả năng linh hoạt, đơn giản, điều khiển phân luồng và phục vụ linh hoạt các dịch vụ định tuyến, tận dụng được đường truyền giúp giảm chi phí Công nghệ MPLS đang dần thay thế các công nghệ truyền thống khác như IP và ATM MPLS VPN giải quyết được những hạn chế của các mạng VPN truyền thống dựa trên công nghệ ATM, Frame Relay và

IP như tiết kiệm thời gian, giảm chi phí lắp đặt và có độ bảo mật cao cho doanh nghiệp Do vậy việc tìm hiểu và ứng dụng VPN trên nền MPLS được xem là vấn đề cấp thiết để giúp doanh nghiệp có thể dễ dàng tiếp cận với công nghệ mới này và từ đó có thể ứng dụng vào việc phát triển của doanh nghiệp mình cùng với sự đi lên của ngành mạng viễn thông quốc tế.

Mục tiêu của đề tài

Mục tiêu của đề tài là:

 Tìm hiểu về giao thức chuyển mạch nhãn MPLS trên mạng riêng ảo VPN, áp dụng MPLS/VPN để cài đặt thực nghiệm.

 Giúp cho người đọc có những khái niệm cơ bản về MPLS và VPN từ đó có thể xây dựng một mạng MEGAWAN dựa trên MPLS/VPN

Bố cục của đề tài gồm các chương chính :

 CHƯƠNG 1 : GIỚI THIỆU VỀ CÔNG NGHỆ VPN

- VPN cho các nhà doanh nghiệp

- VPN đối với các nhà cung cấp dịch vụ

 CHƯƠNG 2 : CHUYỂN MẠCH NHÃN ĐA GIAO THỨC – MPLS

- Khái niệm cơ bản về MPLS : lợi ích, ứng dụng

- Các thành phần trong MPLS

- Giao thức phân phối nhãn

- Các giao thức định tuyến trong MPLS

- Phương thức hoạt động của MPLS

- Lợi ích của MPLS VPN

- Các thành phần trong MPLS VPN

- Hoạt động của mặt phẳng điều khiển MPLS VPN

- Hoạt động của mặt phẳng dữ liệu MPLS VPN

- So sánh VPN truyền thống và MPLS VPN

- Vấn đề bảo mật trong MPLS VPN

 CHƯƠNG 4 : ỨNG DỤNG MPLS VPN TRÊN MEGAWAN

- Khái niệm chung về MegaWan

- Mô hình ứng dụng thực tế

 CHƯƠNG 5 : BẢN DEMO CÀI ĐẶT THỰC NGHIỆM

GIỚI THIỆU VỀ CÔNG NGHỆ VPN

VPN là gì?

VPN là công nghệ cho phép kết nối các thành phần của một mạng riêng (private network) thông qua hạ tầng mạng công cộng (Internet) VPN hoạt động dựa trên kỹ thuật tunneling : gói tin trước khi được chuyển đi trên VPN sẽ được mã hóa và được đặt bên trong một gói tin có thể chuyển đi được trên mạng công cộng Gói tin được truyền đi đến đầu bên kia của kết nối VPN Tại điểm đến bên kia của kết nối VPN, gói tin đã bị mã hóa sẽ được “lấy ra” từ trong gói tin của mạng công cộng và được giải mã

Các giai đoạn phát triển của VPN:

 Thế hệ VPN thứ nhất do AT&T phát triển có tên là SDN

 Thế hệ thứ 2 là ISND và X25.

 Thế hệ thứ 3 là Frame relay và ATM

 Và thế hệ hiện nay, thế hệ thứ 4 là VPN trên nền mạng IP

 Thế hệ tiếp theo sẽ là VPN trên nền mạng MPLS

VPN gồm các vùng sau:

 Mạng khách hàng (Customer network): gồm các router tại các site khách hàng khác nhau Các router kết nối các site cá nhân với mạng của nhà cung cấp được gọi là các router biên phía khách hàng CE

 Mạng nhà cung cấp (Provider network): được dùng để cung cấp các kết nối point- to-point qua hạ tầng mạng của nhà cung cấp dịch vụ Các thiết bị của nhà cung cấp dịch vụ mà nối trực tiếp với CE router được gọi là router biên phía nhà cung cấp

PE Mạng của nhà cung cấp còn có các thiết bị dùng để chuyển tiếp dữ liệu trong mạng trục (SPbackbone) được gọi là các router nhà cung cấp (P- provider).

PHÂN LOẠI VPN

Phân loại VPN bao gồm:

 VPN cho các nhà doanh nghiệp

 VPN đối với các nhà cung cấp dịch vụ

1.2.1 VPN cho các nhà doanh nghiệp

VPN truy cập từ xa hay mạng riêng ảo quay số - VPDN đuợc triển khai, thiết kế cho những khách hàng riêng lẻ ở xa như những khách hàng đi đường hay những khách hàng truy cập vô tuyến Trước đây, các tổ chức, tập đoàn hỗ trợ cho những khách hàng từ xa theo những hệ thống quay số Đây không phải là một giải pháp kinh tế, đặc biệt khi một người gọi lại theo đường truyền quốc tế Với sự ra đời của VPN truy cập từ xa, một khách hàng di động gọi điện nội hạt cho nhà cung cấp dịch vụ Internet (ISP) để truy cập vào mạng tập đoàn của họ chỉ với một máy tính cá nhân được kết nối Internet cho dù họ đang ở bất kỳ đâu VPN truy cập từ xa là sự mở rộng những mạng quay số truyền thống Trong hệ thống này, phần mềm PC cung cấp một kết nối an toàn, như một đường hầm cho tổ chức Bởi vì những người sử dụng chỉ thực hiện các cuộc gọi nội hạt nên chi phí giảm.

Hình 1.1 : Mô hình remote access VPN

VPN site-to-site được triển khai cho các kết nối giữa các vùng khác nhau của một tập đoàn hay tổ chức Nói cách khác các địa điểm muốn kết nối với nhau sẽ sử dụng một VPN.Truớc đây, một kết nối giữa các vị trí này là kênh thuê riêng hay Frame relay Tuy nhiên,ngày nay hầu hết các tổ chức, đoàn thể, tập đoàn đều sử dụng Internet, với việc sử dụng truy cập Internet, VPN site-to-site có thể thay thế kênh thuê riêng truyền thống và Frame relay VPN site-to-site là sự mở rộng và kế thừa có chọn lọc mạng WAN Hai ví dụ sử dụng VPN site-to-site là VPN Intranet và VPN Extranet VPN Intranet có thể xem là tổ chức và đối tác kinh doanh của nó, người dùng truy cập giữa các vị trí này được các bên quản lý chặt chẽ tại các vị trí của mình.

Hình 1.2 : Mô hình site to site của VPN

1.2.2 VPN đối với các nhà cung cấp dịch vụ

Dựa trên sự tham gia của nhà cung cấp dịch vụ trong việc định tuyến cho khách hàng, VPN có thể chia thành hai loại mô hình:

 Mô hình Peer-to-peer VPN

Hình 1.3 : Mô hình overlay của VPN

Khi Frame relay và ATM cung cấp cho khách hàng các mạng riêng, nhà cung cấp không thể tham gia vào việc định tuyến khách hàng Các nhà cung cấp dịch vụ chỉ vận chuyển dữ liệu qua các kết nối ảo Như vậy, nhà cung cấp chỉ cung cấp cho khách hàng kết nối ảo tại lớp 2 Đó là mô hình Overlay Nếu mạch ảo là cố định, sẵn sàng cho khách hàng sử dụng mọi lúc thì được gọi là mạch ảo cố định PVC Nếu mạch ảo được thiết lập theo yêu cầu (on-demand) thì được gọi là mạch ảo chuyển đổi SVC Hạn chế chính của mô hình Overlay là các mạch ảo của các site khách hàng kết nối dạng full mesh Nếu có N site khách hàng thì tổng số lượng mạch ảo cần thiết N(N-1)/2 Overlay VPN được thực thi bởi

SP để cung cấp các kết nối layer 1 (physical) hay mạch chuyển vận lớp 2 (Data link – dạng dữ liệu frame hoặc cell) giữa các site khách hàng bằng cách sử dụng các thiết bị Frame relay hay ATM Switch Do đó, SP không thể nhận biết được việc định tuyến ở khách hàng. Overlay VPN còn thực thi các dịch vụ qua layer 3 với các giao thức tạo đường hầm như GRE, IPSec…Tuy nhiên, dù trong trường hợp nào thì mạng của nhà cung cấp vẫn trong suốt với khách hàng, và các giao thức định tuyến chạy trực tiếp giữa các router của khách hàng

1.2.2.2 Mô hình Peer-to-peer VPN

Hình 1.4 : Mô hình peer to peer của VPN

Mô hình peer-to-peer khắc phục những nhược điểm của mô hình Overlay và cung cấp cho khách hàng cơ chế vận chuyển tối ưu qua SP backbone, vì nhà cung cấp dịch vụ biết mô hình mạng khách hàng và do đó có thể thiết lập định tuyến tối ưu cho các định tuyến của họ Nhà cung cấp dịch vụ tham gia vào việc định tuyến của khách hàng Thông tin định tuyến của khách hàng được quảng bá qua mạng của nhà cung cấp dịch vụ Mạng của nhà cung cấp dịch vụ xác định đường đi tối ưu từ một site khách hàng đến một site khác.

Peer-to-peer VPN chia làm 2 loại:

Router dùng chung, tức là khách hàng VPN chia sẻ cùng router biên mạng nhà cung cấp PE Ở phương pháp này, nhiều khách hàng có thể kết nối đến cùng router PE Trên router PE phải cấu hình access-list cho mỗi interface PE-CE để đảm bảo chắc chắn sự cách ly giữa các khách hàng VPN, để ngăn chặn VPN của khách hàng này thực hiện các tấn công từ chối dịch vụ DoS vào VPN của khách hàng khác Nhà cung cấp dịch vụ chia mỗi phần trong không gian địa chỉ của nó cho khách hàng và quản lý việc lọc gói tin trên Router PE

Là phương pháp mà khách hàng VPN có router PE dành riêng Trong phương pháp này, mỗi khách hàng VPN phải có router PE dành riêng và do đó chỉ truy cập đến các định tuyến trong bảng định tuyến của router PE đó Mô hình Dedicated-router sử dụng các giao thức định tuyến để tạo ra bảng định tuyến trên một VPN trên Router PE Bảng định tuyến chỉ có các định tuyến được quảng bá bởi khách hàng VPN kết nối đến chúng, kết quả là tạo ra sự cách ly giữa các VPN.

Hình 1.5 : Mô hình shared – router và dedicated – router

Nhược điểm của mô hình peer-to-peer:

 Không gian địa chỉ các khách hàng không được trùng nhau

 Địa chỉ khách hàng do nhà cung cấp kiểm soát.

CHUYỂN MẠCH NHÃN ĐA GIAO THỨC – MPLS

Khái niệm cơ bản về MPLS

Công nghệ Chuyển mạch nhãn đa giao thức - MPLS là kết quả phát triển của nhiều công nghệ chuyển mạch IP (IP switching) sử dụng cơ chế hoán đổi nhãn như của ATM để tăng tốc độ truyền gói tin mà không cần thay đổi các giao thức định tuyến của IP Ý tưởng khi đưa ra MPLS là: “Định tuyến ở biên, chuyển mạch ở lõi”

Hình 2.3 : Khái niệm về MPLS

MPLS là phương pháp cải tiến cho việc chuyển tiếp các gói tin IP trên mạng bằng cách thêm vào nhãn (label) MPLS kết hợp các ưu điểm của kỹ thuật chuyển mạch (switching) của lớp 2 và kỹ thuật định tuyến (routing) lớp 3 Do sử dụng nhãn để quyết định chặng tiếp theo trong mạng nên router ít làm việc hơn và hoạt động gần giống như switch MPLS hỗ trợ mọi giao thức lớp 2, triển khai hiệu quả các dịch vụ IP trên một mạng chuyển mạch IP. MPLS hỗ trợ việc tạo ra các tuyến khác nhau giữa nguồn và đích trên một đường trục Internet Bằng việc tích hợp MPLS vào kiến trúc mạng, các ISP có thể giảm chi phí, tăng lợi nhuận, cung cấp nhiều hiệu quả khác nhau và đạt được hiệu quả cạnh tranh cao.Khả năng mở rộng đơn giản Tăng chất lượng mạng, có thể triển khai các chức năng định tuyến mà các công nghệ trước không thể thực hiện được như định tuyến hiện (explicit routing), điều khiển lặp Tích hợp giữa IP và ATM cho phép tận dụng toàn bộ các thiết bị hiện tại trên mạng Tách biệt đơn vị điều khiển với đơn vị chuyển mạch cho phép MPLS hỗ trợ đồng thời MPLS và B-ISDN Việc bổ sung các chức năng mới sau khi triển khai mạng MPLS chỉ cần thay đổi phần mềm điều khiển

2.2.2 Một số ứng dụng của MPLS

Internet có ba nhóm ứng dụng chính: voice, data, video với các yêu cầu khác nhau

 Voice yêu cầu độ trễ thấp, cho phép thất thoát dữ liệu để tăng hiệu quả

 Video cho phép thất thoát dữ liệu ở mức chấp nhận được, mang tính thời gian thực(realtime)

 Data yêu cầu độ bảo mật và chính xác cao MPLS giúp khai thác tài nguyên mạng đạt hiệu quả cao

 Một số ứng dụng đang được triển khai là:

 MPLS VPN: nhà cung cấp dịch vụ sử dụng cơ sở hạ tầng mạng công cộng có sẵn để thực thi các kết nối giữa các site khách hàng

 MPLS Traggic Engineer: Cung cấp khả năng thiết lập một hoặc nhiều đường đi để điều khiển lưu lượng mạng và các đặc trưng thực thi cho một loại lưu lượng

 MPLS QoS (Quality of service): Dùng QoS các nhà cung cấp dịch vụ có thể cung cấp nhiều loại dịch vụ với sự đảm bảo tối đa về QoS cho khách hàng.

Các thành phần trong MPLS

Nhãn là một thực thể có độ dài ngắn, cố định và không có cấu trúc bên trong Nhãn không trực tiếp mã hoá thông tin của mào đầu lớp mạng như địa chỉ lớp mạng Nhãn được gán vào một gói tin cụ thể sẽ đại diện cho một FEC mà gói tin đó được ấn định.Dạng của nhãn phụ thuộc vào phương tiện truyền mà gói tin được đóng gói Ví dụ các gói ATM (tế bào) sử dụng giá trị VPI/VCI như nhãn, Frame relay sử dụng DLCI làm nhãn Đối với các phương tiện gốc không có cấu trúc nhãn, một đoạn đệm được chèn thêm để sử dụng cho nhãn Khuôn dạng đoạn đệm 4 byte có cấu trúc như sau:

Tải Mào đầu IP Đệm MPLS Mào đầu lớp 2

Hình 2.4 : Cấu trúc mào đầu MPLS

MPLS định nghĩa một tiêu đề có độ dài 32 bit và được tạo nên tại LSR vào Nó phải được đặt ngay sau tiêu đề lớp 2 bất kì và trước một tiêu đề lớp 3, ở đây là IP và được sử dụng bởi LSR lối vào để xác định một FEC, lớp này sẽ được xét lại trong vấn đề tạo nhãn.Sau đó các nhãn được xử lí bởi LSR chuyển tiếp.

Khuôn dạng và tiêu đề MPLS được chỉ ra trong hình 2.5 Nó bao gồm các trường sau:

 Nhãn: Giá trị 20 bit, giá trị này chứa nhãn MPLS

 EXP (3 bit): dành cho thực nghiệm, có thể dùng các bit EXP tương tự như các bit ưu tiên

 S: bit ngăn xếp, sử dụng để xắp xếp đa nhãn

 TTL: Thời gian sống, 8 bit, đặt ra một giới hạn mà các gói MPLS có thể đi qua Đối với các khung PPP hay Ethernet giá trị nhận dạng giao thức P-ID (hoặc Ethertype) được chèn thêm vào mào đầu khung tương ứng để thông báo khung là MPLS unicast hay multicast

Là kỹ thuật sử dụng trong việc đóng gói IP Nó cho phép một gói có thể mang nhiều hơn một nhãn Nó được cung cấp bởi việc đưa vào một nhãn mới (mức 2) bên trên nhãn đã tồn tại (mức 1), gói được chuyển tiếp qua mạng dựa trên cơ sở các nhãn ở mức 2, sau khi qua mạng này thì nhãn mức 2 bị loại ra và việc chuyển tiếp này hoạt động dựa trên các nhãn mức 1 Nhãn trên cùng (top) đứng sau header lớp 2, còn nhãn cuối (bottom) đứng trước header lớp 3 Tại mỗi hop router chỉ xử lý nhãn trên cùng của stack

Chuyển mạch nhãn được thiết kế để co dãn các mạng lớn và MPLS hỗ trợ chuyển mạch nhãn với hoạt động phân cấp, hoạt động phân cấp này dựa trên khả năng của MPLS có thể mang nhiều hơn một nhãn trong gói Ngăn xếp nhãn cho phép thiết kế các LSR trao đổi thông tin với nhau và hành động này giống như việc tạo đường viền node để tạo ra một miền mạng rộng lớn và các LSR khác Có thể nói rằng các LSR này là các node bên trong một miền và không liên quan đến đường viền node Việc xử lí một gói nhãn được hoàn thành độc lập với từng mức của sự phân cấp.

Chú ý : rằng trong stack nhãn thì nhãn cuối luôn có giá trị S là 1, các nhãn còn lại S là 0.

2.3.3 Lớp chuyển tiếp tương đương FEC

Là một nhóm các gói IP:

 Có cùng một đường đi trên mạng MPLS

 Có cùng xử lý giống nhau tại bất kỳ LSR nào

Trong định tuyến truyền thống, một gói được gán tới một FEC tại mỗi hop Còn trong MPLS chỉ gán một lần tại LSR ngõ vào Trong MPLS các gói tin đến với các prefix khác nhau có thể gộp chung một FEC, bởi vì quá trình chuyển tiếp gói trong miền MPLS chỉ căn cứ vào LSR ngõ vào để gán tới FEC cho việc xác định LSP, còn các LSR còn lại dựa vào nhãn để chuyển gói Với định tuyến IP, gói được chuyển dựa vào IP nên tại mỗi hop gói đều được gán tới một FEC để xác định đường dẫn

2.3.4 Đường chuyển mạch nhãn LSP

Là tuyến tạo ra từ đầu vào đến đầu ra của mạng MPLS dùng để chuyển tiếp gói của một FEC nào đó sử dụng cơ chế chuyển đổi nhãn (label-swapping forwarding)

2.3.5 Cơ sở dữ liệu nhãn LIB

Là bảng kết nối trong LSR có chứa các giá trị nhãn/FEC được gán vào cổng ra cũng như thông tin về đóng gói phương tiện truyền

Miền MPLS (MPLS domain) là một “tập kế tiếp các nút hoạt động định tuyến và chuyển tiếp MPLS” Miền MPLS có thể chia thành Lõi MPLS (MPLS Core) và biênMPLS (MPLS Edge).

Khi một gói tin IP đi qua miền MPLS, nó đi theo một tuyến được xác định phụ thuộc vào FEC mà nó được ấn định khi đi vào miền Tuyến này gọi là đường chuyển mạch nhãn LSP LSP chỉ một chiều, tức là cần hai LSP cho một truyền thông song công Các nút có khả năng chạy giao thức MPLS và chuyển tiếp các gói tin gốc IP được gọi là bộ định tuyến chuyển mạch nhãn LSR

 LSR lối vào (Ingress LSR) xử lý lưu lượng đi vào miền MPLS

 LSR chuyển tiếp (Transit LSR) xử lý lưu lượng bên trong miền MPLS

 LSR lối ra (Egress LSR) xử lý lưu lượng rời khoi miền MPLS

 LSR biên (Edge LSR) thường được sử dụng như là tên chung cho cả

LSR lối vào và LSR lối ra.

2.3.7 Thành phần cơ bản của MPLS

Các thiết bị tham gia trong một mạng MPLS có thể được phân loại thành các bộ định tuyến biên nhãn LER và các bộ định tuyến chuyển mạch nhãn LSR

Thành phần quan trọng nhất của mạng MPLS là thiết bị định tuyến chuyển mạch nhãn LSR Thiết bị này thực hiện chức năng chuyển tiếp gói tin trong phạm vi mạng MPLS bằng thủ tục phân phối nhãn

LER là một thiết bị hoạt động tại biên của mạng truy nhập và mạng MPLS Các LER hỗ trợ các cổng được kết nối tới các mạng không giống nhau (như Frame Relay, ATM, và Ethernet ) và chuyển tiếp lưu lượng này vào mạng MPLS sau khi thiết lập LSP, bằng việc sử dụng các giao thức báo hiệu nhãn tại lối vào và phân bổ lưu lượng trở lại mạng truy nhập tại lối ra LER đóng vai trò quan trọng trong việc chỉ định và huỷ nhãn, khi lưu lượng vào trong hay ra khỏi mạng MPLS LER là nơi xảy ra việc gán nhãn cho các gói tin trước khi vào mạng MPLS

Các thiết bị biên khác với các thiết bị lõi ở chỗ là: ngoài việc phải chuyển tiếp lưu lượng nó còn phải thực hiện việc giao tiếp với các mạng khác.

Giao thức phân phối nhãn LDP

Giao thức phân phối nhãn LDP là giao thức để trao đổi thông tin nhãn giữa các LSR. Cung cấp kỹ thuật giúp cho các LSR có kết nối trực tiếp nhận ra nhau và thiết lập liên kết cơ chế khám phá (discovery mechanism)

 Bản tin Discovery: thông báo và duy trì sự có mặt của một LSR trong mạng.

 Bản tin Adjency: có nhiệm vụ khởi tạo, duy trì và kết thúc những phiên kết nối giữa các LSR

 Bản tin Label advertisement: thực hiện việc thông báo, đưa ra yêu cầu, hủy bỏ và giải phóng thông tin nhãn

 Bản tin Notification: được sử dụng để thông báo lỗi Thiết lập kết nối TCP để trao đổi các bản tin (ngoại trừ bản tin Discovery)

2.4.1 Quá trình khám phá láng giềng LSR

Giao thức này hoạt động trên kết nối UDP và có thể được xem là giai đoạn nhận biết nhau của hai LSR trước khi chúng thiết lập kết nối TCP Một LSR sẽ quảng bá bản tin hello tới tất cả LSR kết nối trực tiếp với nó trên một cổng UDP mặc định theo một chu kỳ nhất định Tất cả các LSR đều lắng nghe bản tin hello này trên cổng UDP Nhờ đó LSR biết được địa chỉ của tất cả các LSR kết nối trực tiếp với nó Sau khi biết được địa chỉ của một LSR nào đó, một kết nối TCP sẽ được thiết lập giữa hai LSR này Ngay cả khi không kết nối trực tiếp với nhau thì LSR vẫn có thể gửi định kỳ bản tin hello đến cổng UDP mặc định của một địa chỉ IP xác định Và LSR nhận cũng có thể gửi lại bản tin hello cho LSR gửi để thiết lập kết nối TCP.

Hình 2.8 : Quá trình khám phá láng giềng

2.4.2 Các kiểu phân phối nhãn

Trong một miền MPLS, một nhãn gán tới một địa chỉ đích được phân phối tới các láng giềng ngược dòng sau khi thiết lập session Việc kết nối giữa mạng cụ thể với nhãn cục bộ và một nhãn trạm kế (nhận từ router xuôi dòng) được lưu trữ trong LFIB và LIB MPLS dùng các phương thức phân phối nhãn như sau:

 Phân phối nhãn theo yêu cầu

 Phân phối nhãn không theo yêu cầu.

Phân phối nhãn theo yêu cầu :

Phân phối nhãn không theo yêu cầu :

Hình 2.9 : Quá trình trao đổi thông tin nhãn trong LDP

Cấu trúc MPLS

Có hai cơ chế hoạt động trong MPLS là:

Cơ chế này được sử dụng với các mạng IP thông thường, trong cơ chế này nhãn của MPLS là nhãn thực sự được thiết kế và gán cho các gói tin, trong mặt phẳng điều khiển sẽ đảm nhiệm vai trò gán nhãn và phân phối nhãn cho các định tuyến giữa các router chạy MPLS, và trong cơ chế này các router sẽ kết nối trực tiếp với nhau qua 1 giao diện Frame mode như là PPP, các router sẽ sử dụng địa chỉ IP thuần túy để trao đổi thông tin cho nhau như là: thông tin về nhãn và bảng định tuyến routing table

Còn với mạng ATM hay Frame relay chúng không có các kết nối trực tiếp giữa các interface, nghĩa là không thể dùng địa chỉ IP thuần túy để trao đổi thông tin cho nhau, vì vậy ta phải thiết lập các kênh ảo giữa chúng (PVC).

Thuật ngữ này dùng khi có một mạng gồm các ATM LSR dùng MPLS trong mặt phẳng điều khiển để trao đổi thông tin VPI/VCI thay vì dùng báo hiệu ATM Trong kiểu tế bào, nhãn là trường VPI/VCI của tế bào Sau khi trao đổi nhãn trong mặt phẳng điều khiển, ở mặt phẳng chuyển tiếp, router ngõ vào (ingress router) phân tách gói thành các tế bào ATM, dùng giá trị VCI/CPI tương ứng đã trao đổi trong mặt phẳng điều khiển và truyền tế bào đi Các ATM LSR ở phía trong hoạt động như chuyển mạch ATM chúng chuyển tiếp một tế bào dựa trên VPI/VCI vào và thông tin cổng ra tương ứng Cuối cùng, router ngõ ra (egress router) sắp xếp lại các tế bào thành một gói

 GFC : điều khiển luồng chung

 VPI : nhận dạng đường ảo

 CLP : chức năng chỉ thị ưu tiên huỷ bỏ tế bào

 HEC : kiểm tra lỗi tiêu đề

MPLS chia thành 2 mặt phẳng: mặt phẳng điều khiển MPLS ( Control plane ) và mặt phẳng chuyển tiếp MPLS hay còn gọi là mặt phẳng dữ liệu (Data plane).

Hình 2.10 : Mặt phẳng điều khiển và mặt phẳng dữ liệu

Thực hiện chức năng liên quan đến việc nhận biết khả năng có thể đi đến được các mạng đích Mặt phẳng điều khiển chứa tất cả thông tin định tuyến lớp 3 nhằm trao đổi thông tin để có thể đi được đến mạng đích

Các modul điều khiển MPLS gồm:

 Định tuyến Unicast (Unicast Routing)

 Định tuyến Multicast (Multicast Routing)

 Kỹ thuật lưu lượng (Traffic engineering)

 Mạng riêng ảo (Virtual private network)

 Chất lượng dịch vụ (Quality of service).

Hình 2.11 : Các module điều khiển MPLS

Thực hiện chức năng liên quan đến chuyển tiếp gói dữ liệu Các gói này vừa có thể là gói IP lớp 3 hoặc là gói IP đã được gán nhãn.Thông tin trong mặt phẳng dữ liệu, chẳng hạn như giá trị nhãn thường được lấy từ mặt phẳng điều khiển Việc trao đổi thông tin giữa các router láng giềng, tạo ra các ánh xạ của các mạng đích đến các nhãn trong mặt phẳng điều khiển, thường sử dụng để chuyển các gói đã gán nhãn trong mặt phẳng dữ liệu

2.5.3 Các thành phần bên trong mặt phẳng điều khiển và mặt phẳng dữ liệu 2.5.3.1 Chuyển mạch CEF

CEF là một sự thiết lập của Cisco dựa trên MPLS, sử dụng các dịch vụ của nó hoạt động trên router Cisco Là điều kiện tiên quyết để thực hiện MPLS, CEF cung cấp cơ chế chuyển mạch độc quyền được dùng trên các router Cisco nhằm làm tăng tính đơn giản và khả năng thực thi chuyển mạch IPv4 của một router.

2.5.3.2 Cơ sở thông tin chuyển tiếp FIB

CEF sử dụng FIB để chuyển tiếp các gói tin đến đích, là bản sao của nội dung bảng định tuyến IP, chứa ánh xạ một – một giữa bảng FIB và các mục trong bảng định tuyến.Khi CEF được dùng trên router, router duy trì tối thiểu một FIB, chứa một ánh xạ của các mạng đích trong bảng định tuyến đến các hop kế thích hợp được kết nối trực tiếp FIB nằm

Ngoài FIB còn có hai cấu trúc khác được xây dựng trên router, đó là LIB và LFIB Các giao thức phân phối được sử dụng giữa các router láng giềng trong miền MPLS nhằm đáp ứng cho việc tạo ra các mục trong LIB và LFIB:

 LIB nằm trong mặt phẳng điều khiển và thường được dùng bởi giao thức phân phối nhãn Các nhãn HOP kế được nhận từ các Downstream, còn các nhãn cục bộ được tạo ra bởi giao thức phân phối nhãn

 LFIB nằm trong mặt phẳng dữ liệu, chứa một ánh xạ từ nhãn cục bộ đến nhãn HOP kế.

2.5.3.4 Cơ sở thông tin định tuyến RIB

Thông tin về các mạng đích có khả năng đi đến được để lấy từ các giao thức định tuyến chứa trong cơ sở thông tin định tuyến RIB hoặc bảng định tuyến Bảng định tuyến cung cấp thông tin cho một FIB LIB sử dụng thông tin từ giao thức phân phối nhãn, và khi LIB kết hợp cùng với các thông tin lấy từ FIB sẽ tạo ra cơ sở thông tin chuyển tiếp nhãn LFIB

Hình 2.12 : Các thành phần MPLS trong mặt phẳng điều khiển và mặt phẳng dữ liệu

Các giao thức định tuyến trong MPLS

2.6.1 Giao thức định tuyến OSPF

OSPF là một giao thức định tuyến dạng link-state hoạt động trong một hệ tự trị để tìm ra đường đi ngắn nhất đầu tiên, sử dụng thuật toán Dijkstra “Shortest Path First (SPF)” để xây dựng bảng định tuyến Ưu điểm:

 OSPF đáp ứng được nhu cầu cho các mạng lớn

 Có thời gian hội tụ ngắn

 Hỗ trợ CIDR và VLSM

 Kích thước mạng thích hợp cho tất cả các mạng từ vừa đến lớn

 Sử dụng băng thông hiệu quả

 Chọn đường dựa trên chi phí thấp nhất

Router(config)#router ospf process-id

Router(config-router)#network address wildcast-mask area area-id

2.6.2 Giao thức định tuyến EIGRP

EIGRP là một giao thức định tuyến lai (hybrid routing), nó vừa mang những đặc điểm của distance vector vừa mang một số đặc điểm của link-state Ưu điểm:

 EIGRP hội tụ nhanh và tiêu tốn ít băng thông

 EIGRP hỗ trợ VLSM và CIDR nên sử dụng hiệu quả không gian địa chỉ

Router(config)#router eigrp autonomous-system

Router(config-router)#network network-number

2.6.3 Giao thức định tuyến BGP

BGP là một giao thức định tuyến dạng path-vector và việc chọn đường đi tốt nhất thông thường dựa vào một tập hợp các thuộc tính (attribute) BGP sử dụng kết nối TCP trong mọi việc thông tin liên lạc (tạo kết nối TCP 179) BGP có thể sử dụng giữa các router trong cùng một AS và khác AS Khi BGP được dùng trong cùng một AS thì được gọi là iBGP, còn dùng để kết nối các AS khác nhau thì gọi là eBGP

Router(config)#router bgp as-number

Router(config-router)#neighbor {ip address/peer-group-name} update-source interface type interface-number

Router(config-router)#address-family vpnv4

Router(config-router-af)#neighbor {ip address/peer-group-name} activate

Router(config-router)#neighbor {ip address/peer-group-name} send-community

Router(config-router)# neighbor {ip address/peer-group-name} next-hop-self

Phương thức hoạt động của MPLS

Khi một gói tin vào mạng MPLS, các bộ định tuyến chuyển mạch nhãn không thực hiện chuyển tiếp theo từng gói mà thực hiện phân loại gói tin vào trong các lớp tương đương chuyển tiếp FEC

Sau đó các nhãn được ánh xạ vào trong các FEC Một giao thức phân bổ nhãn LDP được xác định và chức năng của nó là để ấn định và phân bổ các ràng buộc FEC/nhãn cho các bộ định tuyến chuyển mạch nhãn LSR Khi LDP hoàn thành nhiệm vụ của nó, một đường dẫn chuyển mạch nhãn LSP được xây dựng từ ngõ vào tới ngõ ra Khi các gói vào mạng, LSR ngõ vào kiểm tra nhiều trường trong tiêu đề gói để xác định xem gói thuộc về FEC nào Nếu đã có một ràng buộc nhãn/FEC thì LSR ngõ vào gắn nhãn cho gói và chuyển tiếp nó tới ngõ ra tương ứng Sau đó gói được hoán đổi nhãn qua mạng cho đến khi nó đến LSR ngõ ra, lúc đó nhãn bị loại bỏ và gói được xử lý tại lớp 3 Vì vậy quá trình chuyển tiếp gói tin diễn ra nhanh hơn so với việc chuyển tiếp dựa vào định tuyến IP Ngoài ra MPLS còn có cơ chế Fast reroute Do MPLS là công nghệ chuyển mạch hướng kết nối, khả năng bị ảnh hưởng bởi lỗi đường truyền thường cao hơn các công nghệ khác Trong khi đó, các dịch vụ tích hợp mà MPLS phải hỗ trợ lại yêu cầu dung lượng cao Do vậy, khả năng phục hồi của MPLS đảm bảo khả năng cung cấp dịch vụ của mạng không phụ thuộc vào cơ cấu khôi phục lỗi của lớp vật lý bên dưới

Mặt phẳng điều khiển quản lý tập các tuyến mà một gói có thể sử dụng, trong mô hình này một gói đi vào thiết bị mạng qua giao diện đầu vào, được xử lý bởi một thiết bị mà nó chỉ xử lý thông tin về gói để đưa ra quyết định logic.

Hình 2.13 : Định tuyến chuyển mạch chuyển tiếp

Giả sử ta có một mạng đơn giản như sau trong đó Router A là Ingress router (router biên ngõ vào), Router C là Egress router (router biên ngõ ra).

Hình 2.14 : Mạng MPLS Ở đây sẽ trình bày cách các router xây dựng bảng FIB và LFIB cho Network X là mạng mà cần truyền dữ liệu đến Phương thức gán và phân tán nhãn gồm những bước như sau:

 Bước 1: Giao thức định tuyến (OSPF hay EIGRP…) xây dựng bảng routing table

 Bước 2: Các LSR lần lượt gán 1 nhãn cho một IP đích trong bảng routing table một cách độc lập

 Bước 3: LSR lần lượt phân tán nhãn cho tất cả các router LSR kế cận Đầu tiên các router sẽ dùng các giao thức định tuyến như OSPF hay EIGRP…để tìm đường đi cho gói tin giống như mạng IP thông thường và xây dựng nên bảng routing table cho mỗi router trong mạng Giả sử, ở đây router A muốn đến mạng X thì phải qua router

B, B chính là Next-hop của router A để đến mạng X.

Hình 2.15 : Quá trình xây dựng bảng routing table

Sau khi bảng routing table đã hình thành, các router sẽ gán nhãn cho các đích đến mà có trong bảng routing table của nó, ví dụ ở đây router B sẽ gán nhãn bằng 25 cho mạng X, nghĩa là những nhãn vào có giá trị 25 router B sẽ chuyển nó đến mạng X.

Hình 2.16 : Quá trình dãn nhãn của Router B

Router B phân tán nhãn 25 cho tất cả các router LSR kế cận nó cùng lúc đó bảng traLIB hình thành trong router B và có entry như hình 2.17.

Hình 2.17 : Quá trình phân phối nhãn của Router B

Các router LSR nhận được nhãn từ router láng giềng sẽ cập nhật vào bảng LIB, riêng với router biên (Edge LSRs) sẽ cập nhật vào bảng LIB và cả FIB của nó.

Hình 2.18 : Quá trình tạo bảng LIB

Cũng giống như B, router C sẽ gán nhãn là 47 cho Network X và sẽ quảng bá nhãn này cho các router kế cận, C không quảng bá cho router D vì D không chạy MPLS.

Hình 2.19 : Quá trình phân phối nhãn của Router C

Cùng lúc đó router C hình thành 2 bảng tra LIB và LFIB có các entry như hình 2.19. trong bảng tra FIB và LIB đồng thời xây dựng bảng tra LFIB có các entry như hình 2.20, router E chỉ thêm nhãn 47 vào trong LIB và FIB.

Hình 2.20 : Quá trình tạo bảng FLIB

Như vậy ta đã có được đường đi từ biên router A đến mạng cần đến là mạng X, hay nói cách khác một LSP đã hình thành Bây giờ gói tin có thể truyền theo đường này tới đích như sau: Một gói tin IP từ mạng IP đến router biên Ingress, router A sẽ thực hiện tra bảng FIB của nó để tìm ra next hop cho gói tin này, ở đây A sẽ gán nhãn 25 cho gói tin này theo entry có trong bảng FIB của nó và sẽ gửi tới next hop là router B để đến mạng X

Hình 2.21 : Quá trình kiểm nhãn tại ingress LSR

Gói tin với nhãn 25 được truyền đến cho router B, router B sẽ tra bảng LFIB của nó và tìm ra giá trị nhãn ngõ ra cho gói tin có nhãn ngõ vào 25 là 47, router B sẽ swap nhãn thành 47 và truyền cho next hop là router C

Hình 2.22 : Quá trình hoán đổi nhãn

Gói tin với nhãn 47 được truyền đến router C, router C sẽ tra bảng LFIB của nó và tìm ra hoạt động tiếp theo cho gói tin có nhãn vào 47 là sẽ pop nhãn ra khoi gói tin và truyền cho next hop là router D, như vậy gói tin đến D là gói tin IP bình thường không nhãn.

Hình 2.23 : Quá trình tháo nhãn tại egress LSR

Gói tin IP này đến D, router D sẽ tra bảng routing table của nó và truyền cho mạng X.

MPLS VPN

MPLS VPN là gì?

MPLS VPN kết hợp những đặc điểm tốt nhất của Overlay VPN và peer-to-peer VPN:

 Các router PE tham gia vào quá trình định tuyến của khách hàng (customer), tối ưu việc định tuyến giữa các site của khách hàng

 Các router PE sử dụng các bảng định tuyến ảo (virtual routing table) cho từng khách hàng nhằm cung cấp khả năng kết nối vào mạng của nhà cung cấp cho nhiều khách hàng

 Các khách hàng có thể sử dụng địa chỉ IP trùng nhau (overlap addresses) MPLS VPN backbone và các site khách hàng trao đổi thông tin định tuyến lớp 3 MPLS VPN gồm các vùng sau:

 Mạng khách hàng: thường là miền điều khiển của khách hàng gồm các thiết bị hay các router trải rộng trên nhiều site của cùng một khách hàng Các router CE là những router trong mạng khách hàng giao tiếp với mạng của nhà cung cấp

 Mạng của nhà cung cấp: là miền thuộc điều khiển của nhà cung cấp gồm các router biên (edge) và lõi (core) để kết nối các site thuộc vào các khách hàng trong một hạ tầng mạng chia sẻ Các router PE là các router trong mạng của nhà cung cấp giao tiếp với router biên của khách hàng Các router P là router trong lõi của mạng, giao tiếp với các router lõi khác hoặc router biên của nhà cung cấp

Trong mạng MPLS VPN, router lõi cung cấp chuyển mạch nhãn giữa các router biên của nhà cung cấp và không biết đến các tuyến VPN Các router CE trong mạng khách hàng không nhận biết được các router lõi, do đó cấu trúc mạng nội bộ của mạng nhà cung cấp trong suốt đối với khách hàng.

Lợi ích của MPLS VPN

 Chi phí thấp, tốc độ ổn định, đáp ứng được yêu cầu về bảo mật thông tin, đơn giản trong việc quản lý và dễ dàng trong việc chuyển đổi

 Giảm thiểu chi phí so với các công nghệ tương đồng trong việc quản lý, xây dựng, triển khai trong một mạng diện rộng

 Tính ổn định và khả năng mở rộng: đáp ứng nhu cầu mở rộng một cách nhanh chóng, có thể kết nối nhanh chóng với các mạng khác

 Thích ứng với nhiều loại công nghệ khác nhau và không thay thế hệ thống mạng hiện tại của khách hàng Với khả năng hỗ trợ nhiều loại công nghệ khác nhau do đó MPLS có thể hỗ trợ nhiều kiểu truy cập khác nhau như Frame relay, IP, …làm giảm thiểu chi phí cho khách hàng hoặc có thể tận dụng thiết bị mạng sẵn có.

 An toàn mạng: với tính năng mã hóa và tạo đường hầm của công nghệ VPN giúp MPLS đạt được mức độ an toàn cao như trong môi trường mạng riêng.

 Chất lượng dịch vụ: đảm bảo phân biệt thứ tự ưu tiên cho các lọai dữ liệu khác nhau như: số liệu, hình ảnh, âm thanh.

Các thành phần trong MPLS VPN

3.3.1 Virtual Routing and Forwarding Table (VRF)

Chức năng của VRF giống như một bản định tuyến toàn cục, ngoại trừ việc nó chứa mọi tuyến liên quan đến một VPN cụ thể VRF chứa một bảng định tuyến IP tương ứng với bảng định tuyến IP toàn cục, một bảng CEF, liệt kê các cổng giao tiếp tham gia vào VRF, và một tập hợp các nguyên tắc xác định giao thức định tuyến trao đổi với các router

CE (routing protocol contexts) VRF còn chứa các định danh VPN (VPN identifier) như thông tin thành viên VPN (RD và RT).

MP-BGP chạy giữa các router biên nhà cung cấp để trao đổi thông tin các tuyếnVPNv4 MP-BGP là mở rộng của giao thức BGP hiện tại Địa chỉ VPNv4 khách hàng là

Một phiên làm việc MP-BGP giữa các PE trong một BGP AS được gọi là MP-iBGP session và kèm theo các nguyên tắc thực thi của iBGP liên quan đến thuộc tính của BGP (BGP attributes) Nếu VPN mở rộng ra khỏi phạm vi một AS, các VPNv4 sẽ trao đổi giữa các AS tại biên bằng MP-eBGP session

RD là một định danh 64-bit duy nhất Giải quyết trùng địa chỉ IP của các khách hàng bằng cách ghép thêm 64-bit vào IPv4 tạo thành địa chỉ VPNv4 (96 bit) Do đó chỉ duy nhất một RD được cấu hình cho một VRF trên router PE Các địa chỉ VPNv4 được trao đổi giữa các router PE qua BGP RD có thể có hai định dạng: dạng địa chỉ IP hoặc chỉ số AS

Hình 3.2 : Giá trị RD Đầu tiên router PE-1 ghép thêm 64-bit RD vào gói tin IPv4 tạo thành địa chỉ VPNv4 và thông qua giao thức MP-BGP chuyển gói tin đến router PE-2

Hình 3.3 Quá trình gán RD

Tại router PE-2 gói tin được bo RD khoi VPNv4 thành IPv4

Hình 3.4 : Quá trình tháo RD

Route targets (RT) là những định danh dùng trong miền MPLS VPN khi triển khai MPLS VPN nhằm xác định thành viên VPN của các tuyến được học từ các site cụ thể RT được thực thi bởi các BGP community mở rộng sử dụng 16 bit cao của BGP extended community (64 bit) mã hóa với một giá trị tương ứng với thành viên VPN của site cụ thể. Khi một tuyến VPN học từ một CE chèn vào VPNv4 BGP, một danh sách các thuộc tính community mở rộng cho VPN router target được kết hợp với nó

 RT được kèm theo định tuyến được gọi là export RT và được cấu hình riêng biệt cho mỗi VRF tại router PE Export RT dùng để xác định thành viên VPN và được kết hợp với mỗi VRF

 Import RT kết hợp với mỗi VRF và xác định các tuyến VPNv4 được thêm vào VRF cho khách hàng cụ thể Định dạng của RT giống như giá trị RD.Khi thực thi các cấu trúc mạng VPN phức tạp (như: extranet VPN, Internet access VPNs, network management VPN,…) sử dụng công nghệ MPLS VPN thì RT giữ vai trò nòng cốt. Một địa chỉ mạng có thể được kết hợp với một hoặc nhiều export RT khi quảng bá qua mạng MPLS VPN

3.4 Cách hoạt động MPLS VPN

Sơ đồ dòng dữ liệu MPLS VPN lớp 3 :

Hình 3.5 : Sơ đồ hoạt động của MPLS lớp 3

Khi vận chuyển trong mạng MPLS VPN, một gói IP được gán hai nhãn sau: Nhãn PE được sử dụng bởi các router lõi (P router) để vận chuyển gói tin trong mạng MPLS; nhãn VPN được sử dụng bởi các router biên của mạng MPLS (PE router) để đưa gói tin đến đúng router đích.

Sơ đồ dòng dữ liệu MPLS VPN lớp 2 :

Hình 3.6 : Hoạt động của MPLS lớp 2

Trong mạng MPLS VPN lớp 2, một frame (dữ liệu của tầng 2) được gán hai nhãn:nhãn L1 được sử dụng bởi các router lõi ( router P) để vận chuyển các frame trong mạngMPLS và nhãn VC1 được sử dụng bởi các PE router để đưa các frame đến đúng router của khách hàng Khi khách hàn sử dụng dịch vụ VPN lớp 2, các thiết bị mạng dùng để kết nối các văn phòng khác nhau của một đơn vị có cùng một subnet Thiết bị định tuyến của nhà cung cấp dịch vụ và khách hàng không trao đổi thông tin định tuyến (routing protocols) với nhau.

Hoạt động của mặt phẳng dữ liệu MPLS VPN

- VPN cho các nhà doanh nghiệp

- VPN đối với các nhà cung cấp dịch vụ

 CHƯƠNG 2 : CHUYỂN MẠCH NHÃN ĐA GIAO THỨC – MPLS

- Khái niệm cơ bản về MPLS : lợi ích, ứng dụng

- Các thành phần trong MPLS

- Giao thức phân phối nhãn

- Các giao thức định tuyến trong MPLS

- Phương thức hoạt động của MPLS

- Lợi ích của MPLS VPN

- Các thành phần trong MPLS VPN

- Hoạt động của mặt phẳng điều khiển MPLS VPN

- Hoạt động của mặt phẳng dữ liệu MPLS VPN

- So sánh VPN truyền thống và MPLS VPN

- Vấn đề bảo mật trong MPLS VPN

 CHƯƠNG 4 : ỨNG DỤNG MPLS VPN TRÊN MEGAWAN

- Khái niệm chung về MegaWan

- Mô hình ứng dụng thực tế

 CHƯƠNG 5 : BẢN DEMO CÀI ĐẶT THỰC NGHIỆM

3 Ý nghĩa thực tiễn của đề tài

Việc tìm hiểu về MPLS VPN giúp cho các nhà cung cấp dịch vụ có thể triển khai và ứng dụng trong thực tế đồng thời khắc phục được những nhược điểm của các mạng VPN truyền thống, cung cấp dịch vụ chất lượng cao qua mạng IP một cách đơn giản, hiệu quả.

CHƯƠNG 1 : GIỚI THIỆU VỀ CÔNG NGHỆ VPN

VPN là công nghệ cho phép kết nối các thành phần của một mạng riêng (private network) thông qua hạ tầng mạng công cộng (Internet) VPN hoạt động dựa trên kỹ thuật tunneling : gói tin trước khi được chuyển đi trên VPN sẽ được mã hóa và được đặt bên trong một gói tin có thể chuyển đi được trên mạng công cộng Gói tin được truyền đi đến đầu bên kia của kết nối VPN Tại điểm đến bên kia của kết nối VPN, gói tin đã bị mã hóa sẽ được “lấy ra” từ trong gói tin của mạng công cộng và được giải mã

Các giai đoạn phát triển của VPN:

 Thế hệ VPN thứ nhất do AT&T phát triển có tên là SDN

 Thế hệ thứ 2 là ISND và X25.

 Thế hệ thứ 3 là Frame relay và ATM

 Và thế hệ hiện nay, thế hệ thứ 4 là VPN trên nền mạng IP

 Thế hệ tiếp theo sẽ là VPN trên nền mạng MPLS

VPN gồm các vùng sau:

 Mạng khách hàng (Customer network): gồm các router tại các site khách hàng khác nhau Các router kết nối các site cá nhân với mạng của nhà cung cấp được gọi là các router biên phía khách hàng CE

 Mạng nhà cung cấp (Provider network): được dùng để cung cấp các kết nối point- to-point qua hạ tầng mạng của nhà cung cấp dịch vụ Các thiết bị của nhà cung cấp dịch vụ mà nối trực tiếp với CE router được gọi là router biên phía nhà cung cấp

PE Mạng của nhà cung cấp còn có các thiết bị dùng để chuyển tiếp dữ liệu trong mạng trục (SPbackbone) được gọi là các router nhà cung cấp (P- provider).

Phân loại VPN bao gồm:

 VPN cho các nhà doanh nghiệp

 VPN đối với các nhà cung cấp dịch vụ

1.2.1 VPN cho các nhà doanh nghiệp

VPN truy cập từ xa hay mạng riêng ảo quay số - VPDN đuợc triển khai, thiết kế cho những khách hàng riêng lẻ ở xa như những khách hàng đi đường hay những khách hàng truy cập vô tuyến Trước đây, các tổ chức, tập đoàn hỗ trợ cho những khách hàng từ xa theo những hệ thống quay số Đây không phải là một giải pháp kinh tế, đặc biệt khi một người gọi lại theo đường truyền quốc tế Với sự ra đời của VPN truy cập từ xa, một khách hàng di động gọi điện nội hạt cho nhà cung cấp dịch vụ Internet (ISP) để truy cập vào mạng tập đoàn của họ chỉ với một máy tính cá nhân được kết nối Internet cho dù họ đang ở bất kỳ đâu VPN truy cập từ xa là sự mở rộng những mạng quay số truyền thống Trong hệ thống này, phần mềm PC cung cấp một kết nối an toàn, như một đường hầm cho tổ chức Bởi vì những người sử dụng chỉ thực hiện các cuộc gọi nội hạt nên chi phí giảm.

Hình 1.1 : Mô hình remote access VPN

VPN site-to-site được triển khai cho các kết nối giữa các vùng khác nhau của một tập đoàn hay tổ chức Nói cách khác các địa điểm muốn kết nối với nhau sẽ sử dụng một VPN.Truớc đây, một kết nối giữa các vị trí này là kênh thuê riêng hay Frame relay Tuy nhiên,ngày nay hầu hết các tổ chức, đoàn thể, tập đoàn đều sử dụng Internet, với việc sử dụng truy cập Internet, VPN site-to-site có thể thay thế kênh thuê riêng truyền thống và Frame relay VPN site-to-site là sự mở rộng và kế thừa có chọn lọc mạng WAN Hai ví dụ sử dụng VPN site-to-site là VPN Intranet và VPN Extranet VPN Intranet có thể xem là tổ chức và đối tác kinh doanh của nó, người dùng truy cập giữa các vị trí này được các bên quản lý chặt chẽ tại các vị trí của mình.

Hình 1.2 : Mô hình site to site của VPN

1.2.2 VPN đối với các nhà cung cấp dịch vụ

Dựa trên sự tham gia của nhà cung cấp dịch vụ trong việc định tuyến cho khách hàng, VPN có thể chia thành hai loại mô hình:

 Mô hình Peer-to-peer VPN

Hình 1.3 : Mô hình overlay của VPN

Khi Frame relay và ATM cung cấp cho khách hàng các mạng riêng, nhà cung cấp không thể tham gia vào việc định tuyến khách hàng Các nhà cung cấp dịch vụ chỉ vận chuyển dữ liệu qua các kết nối ảo Như vậy, nhà cung cấp chỉ cung cấp cho khách hàng kết nối ảo tại lớp 2 Đó là mô hình Overlay Nếu mạch ảo là cố định, sẵn sàng cho khách hàng sử dụng mọi lúc thì được gọi là mạch ảo cố định PVC Nếu mạch ảo được thiết lập theo yêu cầu (on-demand) thì được gọi là mạch ảo chuyển đổi SVC Hạn chế chính của mô hình Overlay là các mạch ảo của các site khách hàng kết nối dạng full mesh Nếu có N site khách hàng thì tổng số lượng mạch ảo cần thiết N(N-1)/2 Overlay VPN được thực thi bởi

SP để cung cấp các kết nối layer 1 (physical) hay mạch chuyển vận lớp 2 (Data link – dạng dữ liệu frame hoặc cell) giữa các site khách hàng bằng cách sử dụng các thiết bị Frame relay hay ATM Switch Do đó, SP không thể nhận biết được việc định tuyến ở khách hàng. Overlay VPN còn thực thi các dịch vụ qua layer 3 với các giao thức tạo đường hầm như GRE, IPSec…Tuy nhiên, dù trong trường hợp nào thì mạng của nhà cung cấp vẫn trong suốt với khách hàng, và các giao thức định tuyến chạy trực tiếp giữa các router của khách hàng

1.2.2.2 Mô hình Peer-to-peer VPN

Hình 1.4 : Mô hình peer to peer của VPN

Mô hình peer-to-peer khắc phục những nhược điểm của mô hình Overlay và cung cấp cho khách hàng cơ chế vận chuyển tối ưu qua SP backbone, vì nhà cung cấp dịch vụ biết mô hình mạng khách hàng và do đó có thể thiết lập định tuyến tối ưu cho các định tuyến của họ Nhà cung cấp dịch vụ tham gia vào việc định tuyến của khách hàng Thông tin định tuyến của khách hàng được quảng bá qua mạng của nhà cung cấp dịch vụ Mạng của nhà cung cấp dịch vụ xác định đường đi tối ưu từ một site khách hàng đến một site khác.

Peer-to-peer VPN chia làm 2 loại:

Router dùng chung, tức là khách hàng VPN chia sẻ cùng router biên mạng nhà cung cấp PE Ở phương pháp này, nhiều khách hàng có thể kết nối đến cùng router PE Trên router PE phải cấu hình access-list cho mỗi interface PE-CE để đảm bảo chắc chắn sự cách ly giữa các khách hàng VPN, để ngăn chặn VPN của khách hàng này thực hiện các tấn công từ chối dịch vụ DoS vào VPN của khách hàng khác Nhà cung cấp dịch vụ chia mỗi phần trong không gian địa chỉ của nó cho khách hàng và quản lý việc lọc gói tin trên Router PE

Là phương pháp mà khách hàng VPN có router PE dành riêng Trong phương pháp này, mỗi khách hàng VPN phải có router PE dành riêng và do đó chỉ truy cập đến các định tuyến trong bảng định tuyến của router PE đó Mô hình Dedicated-router sử dụng các giao thức định tuyến để tạo ra bảng định tuyến trên một VPN trên Router PE Bảng định tuyến chỉ có các định tuyến được quảng bá bởi khách hàng VPN kết nối đến chúng, kết quả là tạo ra sự cách ly giữa các VPN.

Hình 1.5 : Mô hình shared – router và dedicated – router

Nhược điểm của mô hình peer-to-peer:

 Không gian địa chỉ các khách hàng không được trùng nhau

 Địa chỉ khách hàng do nhà cung cấp kiểm soát.

Chương này trình bày tổng quan về công nghệ VPN Trong đó VPN bao gồm VPN dành cho các doanh nghiệp và VPN dành cho các nhà cung cấp dịch vụ Dựa trên sự tham gia của nhà cung cấp dịch vụ trong việc định tuyến cho khách hàng, có hai loại mô hình cơ bản là: overlay VPN và peer-to-peer VPN, mỗi mô hình đều có những ưu và nhược điểm nhất định MPLS VPN đã kết hợp được ưu điểm của 2 mô hình overlay VPN và peer-to- peer VPN đồng thời kế thừa được những ưu điểm của công nghệ MPLS với những thế mạnh về mặt bảo mật, tính mềm dẻo khi triển khai, chất lượng đường truyền và đặc biệt là ưu thế về giá cả.

CHƯƠNG 2 : CHUYỂN MẠCH NHÃN ĐA GIAO THỨC –

IP là thành phần chính của kiến trúc của mạng Internet Trong kiến trúc này, IP đóng vai trò lớp 3 và nó định nghĩa cơ cấu đánh số, cơ cấu chuyển tin, cơ cấu định tuyến và các chức năng điều khiển ở mức thấp (ICMP) Gói tin IP gồm địa chỉ của bên nhận, địa chỉ là một số duy nhất trong toàn mạng và mang đầy đủ thông tin cần cho việc chuyển gói tin tới đích ưu điểm nổi bật của giao thức TCP/IP là khả năng định tuyến và truyền gói tin một cách hết sức mềm dẻo, linh hoạt Nhưng IP không đảm bảo chất lượng dịch vụ và tốc độ truyền tin theo yêu cầu.

Hình 2.1 : Mô hình chuyển tiếp gói tin IP

ATM là một kỹ thuật truyền tin tốc độ cao ATM nhận thông tin ở nhiều dạng khác nhau như thoại, số liệu, video và cắt ra thành nhiều phần nhỏ gọi là tế bào (cell) Các tế bào này sau đó được truyền qua các kết nối ảo VC Vì ATM có thể hỗ trợ thoại, số liệu và video với chất lượng dịch vụ trên nhiều công nghệ băng rộng khác nhau nên nó được coi là công nghệ chuyển mạch hàng đầu Công nghệ ATM có thế mạnh ưu việt về tốc độ truyền tin cao, đảm bảo thời gian thực và chất lượng dịch vụ theo yêu cầu định trước NhưngATM cũng có nhược điểm là tốn băng thông ( do chia gói tin thành các gói nhỏ 53 byte),lãng phí đường truyền, kích thước gói tin nhỏ bị hạn chế tác dụng khi tốc độ truyền vật lý tăng nhiều.

Vấn đề bảo mật trong MPLS/ VPN

3.7.1 Khoảng địa chỉ và định tuyến riêng biệt

MPLS cho phép các VPN khác nhau sử dụng một dải địa chỉ như nhau và được sử dụng như dải địa chỉ riêng [RFC1918] điều này đạt được nhờ việc đưa thêm Tham số phân biệt định tuyến (route distinguisher - RD) 64 bit vào mỗi địa chỉ IPv4, làm cho các địa chỉVPN duy nhất cũng trở thành duy nhất trong lõi MPLS Địa chỉ mở rộng này cũng được gọi là “địa chỉ VPN - IPv4” (hình 1) Do vậy, các khách hàng của một dịch vụ MPLS không cần thay đổi địa chỉ hiện thời của họ trong mạng.

3.7.2 Che giấu cấu trúc lõi của MPLS

Vì lý do bảo mật, các công ty cung cấp dịch vụ và khách hàng thường không muốn cấu trúc mạng của họ bị lộ ra ngoài Điều này làm cho việc tấn công bị khó khăn hơn Nếu một kẻ tấn công không biết về mục tiêu, anh ta chỉ có thể suy đoán địa chỉ IP hoặc cố tìm ra địa chỉ IP bằng cách thử Do phần lớn các cuộc tấn công từ chối dịch vụ DoS (Denial - of - Service) không cung cấp phản hồi cho các kẻ tấn công nên việc tấn công một mạng sẽ là khó khăn.

Với một địa chỉ IP đã biết, một kẻ tấn công có thể tiến hành một cuộc tấn công DoS với thiết bị đó Vì thế tốt hơn hết là không tiết lộ bất cứ thông tin nào về mạng nội bộ cho bên ngoài Việc này cần phải được áp dụng cho hệ thống mạng của khách hàng cũng như lõi MPLS Trên thực tế, rất nhiều biện pháp cần phải được áp dụng nhưng quan trọng hơn hết là lọc gói dữ liệu trên quy mô lớn.

Không một bộ định tuyến P (Provider) hay các VPN khác được VPN1 nhìn thấy Kết nối giữa bộ định tuyến CE (Customer Edge) và PE (Provider Edge), bao gồm địa chỉ kết nối của bộ định tuyến PE, thuộc về khoảng địa chỉ của VPN Tất cả các địa chỉ còn lại của bộ định tuyến PE, như các kết nối vòng phản hồi, không thuộc khoảng địa chỉ của VPN.

MPLS không đưa các thông tin không cần thiết ra bên ngoài, cho dù đó là khách hàng VPN Việc địa chỉ hóa mạng lõi có thể tiến hành với các địa chỉ riêng [RFC1918] hay các địa chỉ công cộng Do giao diện tới VPN - và có thể là Internet - là BGP, do vậy không có lý do để tiết lộ bất kỳ thông tin nội bộ nào Thông tin duy nhất cần trong trường hợp giao thức định tuyến giữa PE và CE là địa chỉ của bộ định tuyến PE (IP PE trong hình 2) Nếu thông tin này không cần thiết, định tuyến tĩnh có thể được cấu hình giữa PE và CE Với phương pháp này, lõi MPLS có thể giữ kín hoàn toàn.

Trong trường hợp dịch vụ VPN với truy nhập Internet được chia xẻ, một nhà cung cấp qua chức năng Biên dịch địa chỉ mạng (Network Address Translation - NAT) để đảm bảo việc che dấu thông tin địa chỉ về mạng của khách hàng Trong trường hợp này, khách hàng không tiết lộ thông tin cho Internet nói chung nhiều hơn so với một dịch vụ Internet Thông tin lõi cũng sẽ không được tiết lộ, trừ khi cho địa chỉ kết nối (peering address) của bộ định tuyến PE có chức năng kết nối Internet.

3.7.3 Chống lại các cuộc tấn công

Phần trên chỉ ra rằng không thể nào xâm nhập vào các VPN khác Khả năng duy nhất là tấn công vào lõi MPLS và cố gắng tấn công vào VPN khác từ lõi này Lõi MPLS có thể bị tấn công theo 2 cách cơ bản:

 Tấn công các bộ định tuyến PE trực tiếp

 Tấn công vào cơ chế thông báo của MPLS (phần lớn là định tuyến). Để tấn công vào một thành phần của mạng MPLS, việc đầu tiên là cần biết địa chỉ của thiết bị Như đã được nói ở trên, cấu trúc địa chỉ của lõi MPLS có thể được che dấu với bên ngoài Do đó, kẻ tấn công không biết địa chỉ IP của bất kỳ bộ định tuyến nào trong lõi mà anh ta muốn tấn công Kẻ tấn công chỉ có thể đoán các địa chỉ và gửi các gói dữ liệu đến các địa chỉ này Định tuyến giữa VPN và lõi MPLS có thể được cấu hình theo 2 cách:

 Tĩnh : Trong trường hợp này các bộ định tuyến PE được cấu hình với định tuyến tĩnh tới mạng sau mỗi CE, và các CE được cấu hình tĩnh chỉ tới bộ định tuyến PE cho bất kỳ mạng nào tại các phần còn lại của VPN (thông thường là tuyến mặc định) Có hai trường hợp nhỏ: bộ định tuyến tĩnh có thể chỉ tới địa chỉ của bộ định tuyến PE, hoặc tới giao diện của bộ định tuyến CE.

 Động : tại đây một giao thức định tuyến (ví dụ: Routing Information Protocol - RIP, Open Shortest Path First - OSPF, BGP) được sử dụng để trao đổi thông tin định tuyến giữa các CE và PE tại mỗi điểm kết nối tương ứng.

Trong trường hợp định tuyến tĩnh từ bộ định tuyến CE tới bộ định tuyến PE chỉ tới một giao diện, bộ định tuyến CE không cần biết bất kỳ một địa chỉ IP của mạng lõi, thậm chí của cả bộ định tuyến PE điều này có hạn chế cho các cấu hình lớn hơn cho định tuyến tĩnh, nhưng nhìn từ góc độ bảo mật, đây là cách được ưa thích hơn các trường hợp khác.

Trên thực tế, truy nhập tới bộ định tuyến PE thông qua giao diện CE/PE có thể bị hạn chế tới giao thức định tuyến được yêu cầu bằng cách sử dụng danh mục quản lý truy nhập (Access Control Lists - ACL) Giải pháp này hạn chế điểm tấn công tới một giao thức định tuyến, ví dụ BGP Một vụ tấn công có thể gửi dữ liệu tới nhiều bộ định tuyến, hay làm tràn ngập bộ định tuyến PE với các thông tin cập nhật định tuyến Cả hai đều dẫn tới DoS, tuy nhiên không cho phép truy nhập trái phép.

Trong MPLS, gói dữ liệu mạng được truyền đi không dựa trên địa chỉ IP đích mà dựa trên các nhãn do các bộ định tuyến PE gán vào Giống như tấn công kiểu giả IP khi một kẻ tấn công thay địa chỉ IP nguồn hoặc đích của một gói dữ liệu, về mặt lý thuyết có thể làm giả nhãn của một gói dữ liệu MPLS Phần này tập trung vào việc liệu có thể chèn vào gói dữ liệu với một nhãn sai vào mạng MPLS từ bên ngoài, ví dụ từ một VPN (bộ định tuyến CE) hay từ Internet

Theo nguyên tắc, giao tiếp giữa bất kỳ bộ định tuyến CE và bộ định tuyến PE tương ứng là một giao tiếp IP (không có nhãn) Bộ định tuyến CE không biết đến lõi MPLS, và cho rằng nó gửi các gói IP đến một bộ định tuyến thường Độ thông minh được thể hiện tại thiết bị PE, dựa vào cấu hình mà nhãn được lựa chọn và gán vào gói tin Đây là trường hợp cho tất cả bộ định tuyến PE, bộ định tuyến chuyển tiếp CE cũng như dòng dữ liệu lên của nhà cung cấp dịch vụ Tất cả các giao tiếp tới đám mây MPLS chỉ cần gói dữ liệu IP, không có nhãn.

Vì các lý do bảo mật, một bộ định tuyến PE sẽ không bao giờ chấp nhận một gói dữ liệu có nhãn từ một bộ định tuyến CE Trong các bộ định tuyến của Cisco, khi các gói dữ liệu với các nhãn đi đến từ giao tiếp CE thì sẽ bị huỷ bỏ Vì vậy không thể đưa vào một nhãn giả vì không một nhãn nào được chấp nhận.

ỨNG DỤNG MPLS/VPN TRÊN MEGAWAN

Khái niệm chung về MegaWan

MegaWAN là dịch vụ kết nối mạng máy tính tại nhiều điểm cố định khác nhau trên diện rộng của các tổ chức, doanh nghiệp Đây là mạng riêng ảo kết nối mạng riêng nội hạt, liên tỉnh, quốc tế để truyền số liệu, truyền dữ liệu thông tin rất tiện lợi và đáng tin cậy cho doanh nghiệp trong kinh doanh Là dịch vụ cung cấp kết nối mạng riêng cho khách hàng trên giao thức MPLS Dịch vụ MPLS/VPN cho phép triển khai các kết nối nhanh chóng, đơn giản, thuận tiện với chi phí thấp.

MegaWan rất cần thiết cho các tổ chức, doanh nghiệp có nhiều chi nhánh, nhiều điểm giao dịch cần phải kết nối truyền dữ liệu như: Ngân hàng, Bảo hiểm, Hàng không, Cty chứng khoán MegaWan kết nối các mạng máy tính trong nước và quốc tế bằng đường dây thuê bao SHDSL (công nghệ đường dây thuê bao số đối xứng) hoặc ADSL (công nghệ đường dây thuê bao số bất đối xứng) kết hợp với công nghệ MPLS/VPN.

Các yêu cầu đặt ra khi thiết kế mạng MEGAWAN

Chủ yếu có 4 yêu cầu chính như sau:

+ Mạng WAN phải mềm dẻo, có khả năng đáp ứng được những thay đổi trong hoạt động kinh doanh của doanh nghiệp như mở thêm văn phòng, thay đổi nhà cung cấp nguyên liệu, thay đổi nhà phân phối, kênh bán hàng, v.v , khi đó cấu trúc mạng và số nút mạng cũng cần được thay đổi theo

+ Khả năng khôi phục nhanh khi có sự cố, gia tăng khả năng định tuyến lại lưu lượng thật nhanh chóng khi một điểm trung gian trên mạng hoặc 1 đường truyền dẫn bị đứt. Thông thường yêu cầu về thời gian khôi lục liên lạc trong khoảng 50 ms hay nhỏ hơn nếu như phục cho các lưu lượng thoại

+ Hội tụ hạ tầng mạng lưới (Convergence of Network Infrastructure): hợp nhất rất nhiều loại công nghệ (như ATM, Frame Relay), các giao thức (như IP, IPX, SNA) và các kiểu lưu lượng (như data, voice, và video) vào cùng một hạ tầng mạng duy nhất.

+ Cách ly lưu lượng (Traffic Isolation) : nhằm tăng tính bảo mật (chỉ truy cập được vào luồng lưu lượng của mình) và tính ổn định (các hoạt động của một thực thể chỉ ảnh

Do đó, giải pháp đưa ra là phải xây dựng một mạng mềm dẻo và đa dịch vụ Mạng này phải tích hợp được các dịch vụ của intranet, extranet, Internet và hỗ trợ cho mô hìnhVPN đa dịch vụ Sự xuất hiện của MPLS đã đưa ra được một giải pháp như thế và sẽ là sự lựa chọn ưu tiên của các nhà cung cấp.

Ứng dụng của MEGAWAN

 Mạng nối Mạng (LAN/WAN to LAN/WAN).

 Xem phim theo yêu cầu (Video on Demand).

 Hội nghị truyền hình (Video Conferencing).

 Chơi Game trên mạng (Network game ; Game online).

 Làm việc từ xa , tại nhà (home office , Telecommuting).

 Đào tạo/học từ xa qua mạng (Tele learning).

 Chẩn đoán/điều trị bệnh từ xa (Tele medicine).

 Mua hàng/Bán hàng qua mạng (Online Shopping).

 Phát thanh/truyền hình (Broadcast Audio&TV).

 Phục vụ cho các DV an ninh (home security, traffic management …)

 Dịch vụ mạng riêng ảo (VPN).

Mô hình MEGAWAN thực tế

Cho phép kết nối các mạng máy tính của doanh nghiệp (như các văn phòng, chi nhánh, cộng tác viên từ xa, v.v ) thuộc các vị trí địa lý khác nhau tạo thành một mạng duy nhất và tin cậy thông qua việc sử dụng các liên kết băng rộng xDSL Cho phép vừa truy nhập mạng riêng vừa truy cập Internet.

Hình 4.1 : Mô hình mạng MegaWAN (nội tỉnh)

Hình 4.2 : Mô hình mạng MegaWAN (liên tỉnh)

Hình 4.3 : Mô hình MegaWAN truy cập mạng riêng ảo đồng thời truy nhập Internet

4.4.1 Gọi điện thoại miễn phí dựa trên hệ thống tổng đài nội bộ

Với hệ thống tổng đài nội bộ đã có sẵn cộng thêm giải pháp VoIP không phải tốn chi phí điện thoại đường dài hằng tháng đã tạo ra một bước ngoặt lớn trong quá trình truyển thông :

 Chất lượng điện thoại rõ như đang nói chuyện trực tiếp với nhau.

 Cách quay số rất đơn giản, dễ sử dụng.

 Chi phí xây dựng mạng VOIP thấp.

Việc gọi điện thoại VoIP thông qua mạng MegaWAN không tốn bất kỳ chi phí nào.

Hình 4.4 : VoIP thông qua mạng MegaWAN

Giải pháp truyền hình hội nghị thông qua mạng MegaWAN để giảm chi phí đi lại hội họp giữa các chi nhánh của Công ty ở các Tỉnh khác nhau, Tại các chi nhánh là các đầu cầu truyền hình mà có thể nhìn thấy và nghe thấy các đầu cầu truyền hình khác

4.4.3 Giám sát camera thông qua mạng MEGAWAN Thông qua mạng MegaWAN có thể giám sát hệ thống camera tại các chi nhánh Có quan sát hình ảnh của các chi nhánh, hình ảnh các nơi cần được giám sát…Hệ thống camera tại các chi nhánh có thể là Camera Analog hay Camera IP Chuyển đổi Analog- VoIP Grandstream

Hình 4.6 : Mô hình thiết lập camera giám sát quan MegaWan

BẢN DEMO CÀI ĐẶT THỰC NGHIỆM

Cấu hình

! ip cef interface Loopback0 ip address 10.10.10.10 255.255.255.0

! interface Serial1/0 ip address 192.168.1.2 255.255.255.0 serial restart-delay 0

! router rip version 2 network 10.0.0.0 network 192.168.1.0 no auto-summary

! ip cef ip audit po max-events 100

! interface Serial1/0 ip address 192.168.2.2 255.255.255.0 serial restart-delay 0

! router rip version 2 network 20.0.0.0 network 192.168.2.0 no auto-summary

5.1.3 Cấu hình router PE01: hostname PE01

! ip vrf A1 rd 1:100 route-target export 1:100 route-target import 1:100

! ip vrf B1 rd 1:200 route-target export 1:200 route-target import 1:200

! ip cef ip audit po max-events 100

! interface Serial1/0 ip vrf forwarding A1 ip address 192.168.1.1 255.255.255.0 serial restart-delay 0

! interface Serial1/1 ip vrf forwarding B1 ip address 192.168.2.1 255.255.255.0 serial restart-delay 0

! interface Serial1/2 ip address 192.168.3.1 255.255.255. mpls label protocol ldp

! router eigrp 100 network 1.0.0.0 network 192.168.3.0 no auto-summary

! address-family ipv4 vrf B1 redistribute bgp 1 metric transparent network 192.168.2.0 no auto-summary exit-address-family

! address-family ipv4 vrf A1 redistribute bgp 1 metric transparent network 192.168.1.0 no auto-summary exit-address-family

! router bgp 1 no synchronization bgp log-neighbor-changes neighbor 2.2.2.2 remote-as 1 neighbor 2.2.2.2 update-source Loopback0 no auto-summary

! address-family vpnv4 neighbor 2.2.2.2 activate neighbor 2.2.2.2 next-hop-self neighbor 2.2.2.2 send-community both exit-address-family

! address-family ipv4 vrf B1 redistribute rip no auto-summary no synchronization exit-address-family

! address-family ipv4 vrf A1 redistribute rip no auto-summary no synchronization exit-address-family

! ip cef ip audit po max-events 100

! interface Serial1/0 ip address 192.168.3.2 255.255.255.0 mpls label protocol ldp tag-switching ip serial restart-delay 0

! interface Serial1/1 ip address 192.168.4.1 255.255.255.0 mpls label protocol ldp tag-switching ip router eigrp 100 network 3.0.0.0 network 192.168.3.0 network 192.168.4.0 no auto-summary

5.1.5 Cấu hình router PE02: hostname PE02

! ip vrf A2 rd 1:100 route-target export 1:100 route-target import 1:100

! ip vrf B2 rd 1:200 route-target export 1:200 route-target import 1:200

! ip cef ip audit po max-events 100

! interface Serial1/0 ip address 192.168.4.2 255.255.255.0 mpls label protocol ldp tag-switching ip serial restart-delay 0

! interface Serial1/1 ip vrf forwarding A2 ip address 192.168.5.1 255.255.255.0 serial restart-delay 0

! interface Serial1/2 ip vrf forwarding B2 ip address 192.168.6.1 255.255.255.0 serial restart-delay 0

! router eigrp 100 network 2.0.0.0 network 192.168.4.0 no auto-summary

! address-family ipv4 vrf B2 redistribute bgp 1 metric transparent network 192.168.6.0 no auto-summary exit-address-family

! address-family ipv4 vrf A2 redistribute bgp 1 metric transparent network 192.168.5.0 no auto-summary exit-address-family

! router bgp 1 no synchronization bgp log-neighbor-changes neighbor 1.1.1.1 remote-as 1

! address-family vpnv4 neighbor 1.1.1.1 activate neighbor 1.1.1.1 next-hop-self neighbor 1.1.1.1 send-community both exit-address-family

! address-family ipv4 vrf B2 redistribute rip no auto-summary no synchronization exit-address-family

! address-family ipv4 vrf A2 redistribute rip no auto-summary no synchronization exit-address-family

! ip cef ip audit po max-events 100

! interface Serial1/0 ip address 192.168.5.2 255.255.255.0 serial restart-delay 0

! router rip version 2 network 30.0.0.0 network 192.168.5.0 no auto-summary

! ip cef ip audit po max-events 100

! interface Serial1/0 ip address 192.168.6.2 255.255.255.0 serial restart-delay 0

! router rip version 2 network 40.0.0.0 network 192.168.6.0 no auto-summary

Thông tin định tuyến

5.2.1 Thông tin định tuyến của A1

Hình 5.2 Thông tin định tuyến của A1

5.2.2 Thông tin định tuyến của A2

Hình 5.3 Thông tin định tuyến của A2

5.2.3 Thông tin định tuyến của B1

Hình 5.4 Thông tin định tuyến của B1

5.2.4 Thông tin định tuyến của B2

Hình 5.5 Thông tin định tuyến của B2

Hình 5.6 Thông tin định tuyến của PE01

5.2.6 Thông tin định tuyến của PE02

Hình 5.7 Thông tin định tuyến của PE02

5.2.7 Thông tin định tuyến của P

Hình 5.8 : Thông tin định tuyến của P

Kiểm tra

Kiểm tra LDP đã nhận một nhãn của những mạng con và các interface loopback của các router core chưa

Hình 5.9 show mpls ldp bindings PE01

Hình 5.10 show mpls ldp bindings P

Hình 5.11 : Show mpls ldp bindings PE02

Hình 5.12 : Bảng LFIB trên PE01

Hình 5.14 : Bảng LFIB trên PE02

Hình 5.15 : Bảng định tuyến vrf A1 trên PE01

Hình 5.16 : Bảng định tuyến vrf A2 trên PE02

Hình 5.17 bảng định tuyến vrf B1 trên PE01

Hình 5.18 bảng định tuyến vrf B2 trên PE02

PHẦN KẾT LUẬN Đề tài là giúp ta có được cái nhìn tổng quan về VPN, đồng thời giới thiệu về công nghệ mới đang được ưa chuộng hiện nay là MPLS, một công nghệ kết hợp giữa định tuyến tốt ở mạng biên và chuyển gói nhanh trong mạng lõi Một trong số những ứng dụng quan trọng của MPLS là MPLS VPN Đề tài đi sâu vào nghiên cứu MPLS VPN giúp cho việc bảo mật thông tin giữa các site của khách hàng khi truyền qua mạng

Với mạng riêng ảo dựa trên MPLS các doanh nghiệp, tổ chức hoàn toàn có thể đạt được các mục tiêu của mình như: điều khiển nhiều hơn trên hạ tầng mạng, có được dịch vụ hiệu năng và độ tin cậy tốt hơn, cung cấp đa lớp dịch vụ tới người sử dụng, mở rộng an toàn, đảm bảo hiệu năng đáp ứng theo yêu cầu của ứng dụng, hỗ trợ hội tụ đa công nghệ và đa kiểu lưu lượng trên cùng một mạng đơn Nhờ ưu điểm vượt trội của chất lượng dịch vụ qua mạng IP và là phương án triển khai VPN mới khắc phục được nhiều vấn đề mà các công nghệ ra đời trước nó chưa giải quyết được, MPLS thực sự là một lựa chọn hiệu quả trong triển khai hạ tầng thông tin doanh nghiệp

Hướng mở rộng của đề tài: MPLS VPN là một đề tài rất hay và lớn Ngoài những vấn đề đã đề cập trong đề tài, còn rất nhiều những vấn đề khác về MPLS như: chất lượng dịch vụ, điều khiển lưu lượng, chuyển mạch bước song đa giao thức, áp dụng ý tưởng chuyển mạch nhãn vào chuyển mạch quang, khi đó các bước sóng quang như là nhãn Do trình độ còn hạn chế em mới chỉ tìm hiểu được một phần nhỏ của công nghệ MPLS là MPLS VPN.

Vì vậy, đề tài sẽ không thể tránh khỏi thiếu sót và hạn chế, em mong nhận được mọi ý kiến đóng góp của các thầy cô và các bạn quan tâm đến vấn đề này.

Ngày đăng: 13/07/2023, 15:12

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
1) Đề tài về MPLS/VPN của anh Lê Đình Thắng và Lê Diên Tâm 2) http://www.tapchibcvt.gov.vn Link
3) TS.Trần Công Hùng, chuyển mạch nhãn đa giao thức MPLS, nhà xuất bản thông tin và truyền thông, 7/2009 Khác
4) Brian Morgan và Neil Lovering, CCNP ISCW Official Exam Certification Guide, Cisco Press Khác
5) Jim CCIE #2069 Guichard và Ivan CCIE #1354 Pepelnjak, MPLS and VPN Architectures, Cisco Press Khác
6) Dương Văn Toán, MPLS Lab Guide Version 1.0 (MPLS - Multiprotocol Label Switching), vnexperts, 9/2008 Khác
7) Đăng Quang Minh, CCNA labpro, nhà xuất bản trẻ, 2008 Khác
8) Munther Louis Antoun, mpls vpn configuration and design guide 9) Trần Thị Tố Quyên, Chuyển mạch nhãn đa giao thức Khác

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w