1. Trang chủ
  2. » Luận Văn - Báo Cáo

Tập ngẫu nhiên hữu hạn trong thống kê

102 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 102
Dung lượng 546,06 KB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: TẬP NGẪU NHIÊN HỮU HẠN TRONG THỐNG KÊ LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Bài tốn khơi phục hàm gốc cho trước hàm ảnh phép biến đổi Laplace tốn khơng chỉnh theo nghĩa Hadamard, nghĩa tốn khơng ln có nghiệm có nghiệm nghiệm không phụ thuộc liên tục vào kiện cho Do vậy, sai số nhỏ hàm ảnh dẫn đến sai số lớn hàm gốc Để chỉnh hố tốn có nhiều phương pháp nêu chẳng hạn phương pháp Tikhonov Trong luận văn này, chúng tơi tìm hiểu việc chỉnh hố biến đổi Laplace ngược theo hướng khai thác tính chất hàm giải tích 610 2 Cấu trúc nhóm số nhóm hữu hạn Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ Ký hiệu Rk , Tl , Ui,j nhóm Dn có dạng sau Rk = ⟨rk ⟩, Tl = ⟨rl s⟩, Ui,j = ⟨ri , rj s⟩ với ⩽ k ⩽ n, ⩽ l ⩽ n − 1, ⩽ i ⩽ n − 1, ⩽ j ⩽ n − Sau số tính chất nhóm nhị diện, xem [?] Mệnh đề Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ Khi (i) Rk nhóm xiclíc cấp n , d = (n, k), với ⩽ k ⩽ n; d (ii) Tl nhóm xiclíc cấp với ⩽ l ⩽ n − 1; (iii) Ui,j nhóm nhị diện cấp 2n , d = (n, i), với i|n, ⩽ i ⩽ n− d ⩽ j ⩽ n − Mệnh đề Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ Khi (i) Nếu n lẻ CDn (1) = Dn , CDn (ri ) = R1 , CDn (rj s) = Tj với ⩽ i ⩽ n − 1, ⩽ j ⩽ n − 1; (ii) Nếu n chẵn CDn (1) = Dn , CDn (rm ) = Dn , CDn (ri ) = R1 , CDn (rj s) = Um,j n với m = , ⩽ i ⩽ n − 1, i ̸= m, ⩽ j ⩽ n − Mệnh đề Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ 3, H nhóm nhóm Dn Khi H nhóm sau Rk = ⟨rk ⟩, Tl = ⟨rl s⟩, Ui,j = ⟨ri , rj s⟩ với k|n, ⩽ k ⩽ n, ⩽ l ⩽ n − 1, i|n, ⩽ i ⩽ n − 1, ⩽ j ⩽ i − Cho nhóm quaternion suy rộng Q4n = ⟨r, s | r2n = 1, s2 = rn , s−1 rs = r−1 ⟩ với n ⩾ Ký hiệu Rk , Ui,j nhóm Q4n có dạng sau Rk = ⟨rk ⟩, Ui,j = ⟨ri , rj s⟩ với ⩽ k ⩽ 2n, ⩽ i ⩽ 2n, ⩽ j ⩽ 2n − Sau số tính chất nhóm quaternion suy rộng, xem [?] Mệnh đề Cho nhóm quaternion suy rộng Q4n với n ⩾ Khi 2n , d = (2n, k), với ⩽ k ⩽ 2n; d 4n (ii) Ui,j nhóm quaternion suy rộng cấp , d = (n, i), d với ⩽ i ⩽ 2n, ⩽ j ⩽ 2n − (i) Rk nhóm xiclíc cấp Mệnh đề Cho nhóm Quaternion suy rộng Q4n với n ⩾ Khi CQ4n (1) = CQ4n (rn ) = Q4n , CQ4n (ri ) = R1 , CQ4n (rj s) = Un,j với ⩽ i ⩽ 2n − 1, i ̸= n, ⩽ j ⩽ 2n − Mệnh đề Cho nhóm quaternion suy rộng Q4n với n ⩾ 2, H nhóm Q4n Khi H nhóm sau Rk = ⟨rk ⟩, Ui,j = ⟨ri , rj s⟩ với k|2n, ⩽ k ⩽ 2n, ⩽ i ⩽ n, i|n, ⩽ j ⩽ i − Cho nhóm giả nhị diện n n−1 SD2n = ⟨r, s | r2 = s2 = 1, s−1 rs = r2 −1 ⟩ với n ⩾ Ký hiệu Rk , Tl , Ui,j nhóm nhóm giả nhị diện SD2n có dạng sau Rk = ⟨rk ⟩, Tl = ⟨rl s⟩, Ui,j = ⟨ri , rj s⟩ với ⩽ k ⩽ 2n , ⩽ l ⩽ 2n − 1, ⩽ i ⩽ 2n − 1, ⩽ j ⩽ 2n − Sau số tính chất nhóm giả nhị diện, xem [?] Mệnh đề Cho nhóm giả nhị diện SD2n với n ⩾ Khi (i) Rk nhóm xiclíc cấp 2n d = (2n , k), với ⩽ k ⩽ 2n ; d (ii) Tl nhóm xiclíc cấp l chẵn, cấp l lẻ với ⩽ l ⩽ 2n − 1; (iii) Ui,j nhóm giả nhị diện i lẻ với ⩽ i ⩽ 2n − 1, ⩽ j ⩽ 2n − 1; Ui,j nhóm nhị diện i chẵn j chẵn, nhóm quaternion tổng quát i chẵn j lẻ với ⩽ i ⩽ 2n − 1, i ̸= 2n−1 , ⩽ j ⩽ 2n − 1; Với i = 2n−1 , Ui,j nhóm xiclíc cấp j lẻ, Ui,j ∼ = C2 × C2 j chẵn 2n+1 Trong tất trường hợp nhóm Ui,j có cấp d d = (2n , i) Mệnh đề Cho nhóm giả nhị diện SD2n với n ⩾ Khi CSD2n (1) = CSD2n (r2 n−1 ) = SD2n , CSD2n (ri ) = R1 , CSD2n (rj s) = U2n−1 ,j với ⩽ i ⩽ 2n − 1, i ̸= 2n−1 , ⩽ j ⩽ 2n − Mệnh đề Cho nhóm giả nhị diện SD2n với n ⩾ 3, H nhóm SD2n Khi nhóm H SD2n nhóm sau (i) Rk = ⟨rk ⟩ với ⩽ k ⩽ 2n ; (ii) Tl = ⟨rl s⟩ với ⩽ l ⩽ 2n − l chẵn, ⩽ l ⩽ 2n−1 − l lẻ; (iii) Ui,j với ⩽ i ⩽ 2n−2 , i|2n , ⩽ j ⩽ i−1, U2n−1 ,j với ⩽ j ⩽ 2n−1 − 1, j chẵn Độ giao hốn tương đối nhóm Ta bắt đầu định nghĩa độ giao hoán nhóm Định nghĩa Cho G nhóm H nhóm G Ký hiệu C = {(h, g) ∈ H × G | hg = gh} Độ giao hoán tương đối nhóm H G, ký hiệu Pr(H, G), định nghĩa sau Pr(H, G) = |C| |H||G| Từ Định nghĩa ta thấy Pr(G, G) = Pr(G), Pr(G) độ giao hốn nhóm G định nghĩa Định nghĩa ?? Sau số ví dụ độ giao hốn tương đối số nhóm Ví dụ Xét nhóm nhị diện D3 cho phần tử sinh hệ thức xác định sau D3 = ⟨r, s | r3 = s2 = 1, s−1 rs = r−1 ⟩ Khi D3 = {1, r, r2 , s, rs, r2 s} phép nhân phần tử D3 cho bảng sau • 1 r r2 s rs r2 s r r2 s rs r2 s r r r2 r2 r2 r rs r2 s s r s s rs s s rs r2 s r r2 r2 s r2 s s rs r r2 r rs rs r2 s s r2 Bằng cách đếm trực tiếp theo Định nghĩa ta có bảng sau Các nhóm H = {1} H = ⟨r⟩ H = ⟨s⟩ H = ⟨rs⟩ H = ⟨r2 s⟩ H = D3 |C| 12 8 18 Pr(H, D3 ) 3 3 Ví dụ Xét nhóm nhị diện D4 cho phần tử sinh hệ thức xác định sau D4 = ⟨r, s | r4 = s2 = 1, s−1 rs = r−1 ⟩ Khi D4 = {1, r, r2 , r3 , s, rs, r2 s, r3 s} phép nhân phần tử D4 cho bảng sau • 1 r r2 r3 s rs r2 s r3 s r r2 r3 s rs r2 s r3 s r r r2 r3 r2 r2 r3 r3 r3 1 r r2 s r3 s s rs r r2 rs r2 s r3 s s r s s rs r2 s s s rs r2 s r3 s rs rs r2 s r3 s s r3 r r2 r3 r r2 r2 s r2 s r3 s s rs r2 r3 r3 s r3 s s rs r2 s r r2 r3 r Bằng cách đếm trực tiếp theo Định nghĩa ta có bảng sau Các nhóm H = {1} H = ⟨r⟩ H = ⟨r2 , s⟩ H = ⟨r2 , rs⟩ H = ⟨s⟩ |C| 24 24 24 12 Pr(H, D4 ) 4 4 Các nhóm H = ⟨rs⟩ H = ⟨r2 s⟩ H = ⟨r3 s⟩ H = ⟨r2 ⟩ H = D4 |C| 12 12 12 16 40 Pr(H, D4 ) 4 Ví dụ Xét nhóm quaternion Q8 cho phần tử sinh hệ thức xác định sau Q8 = ⟨r, s | r4 = 1, s2 = r2 , s−1 rs = r−1 ⟩ Khi Q8 = {1, r, r2 , r3 , s, rs, r2 s, r3 s} phép nhân phần tử Q8 cho bảng sau • 1 r r2 r3 s rs r2 s r3 s r r2 r3 s rs s2 s r3 s r r r2 r3 r2 r2 r3 r3 r3 1 r r2 s r3 s s rs r r2 rs r2 s r3 s s r s s rs r2 s s s rs r2 s r3 s r2 r3 rs rs r2 s r3 s s r r2 r3 r r2 s r2 s r3 s s rs r r2 r3 r3 s r3 s s rs r2 s r3 r r2 Bằng cách đếm trực tiếp theo Định nghĩa ta có bảng sau Các nhóm H = {1} H = ⟨r⟩ H = ⟨r2 ⟩ H = ⟨s⟩ H = ⟨rs⟩ H = Q8 |C| 24 16 24 24 40 Pr(H, Q8 ) 4 Từ định nghĩa độ giao hốn tương đối ta có kết sau Mệnh đề 10 Cho G nhóm H nhóm G Khi X X Pr(H, G) = |H||G| |CG (x)| = x∈H |H||G| |CH (y)| y∈G Chứng minh Ký hiệu C = {(x, y) ∈ H × G | xy = yx} Với x ∈ H số cặp phần tử (x, y) ∈ C |CG (x)| CG (x) tâm hóa x G Với y ∈ G số cặp phần tử (x, y) ∈ C |CH (y)| CH (y) tâm hóa y H Cho nên ta có X X |C| = |CG (x)| = x∈H |CH (y)| y∈G Từ suy cơng thức cần chứng minh Kết sau cho ta cơng thức tính độ giao hốn tương đối nhóm chuẩn tắc nhóm nhờ số lớp liên hợp Mệnh đề 11 Cho G nhóm H nhóm chuẩn tắc G Khi Pr(H, G) = k |H| k số lớp liên hợp G nằm H Chứng minh Với x ∈ G bất kỳ, ký hiệu lớp liên hợp x G O(x) Khi ta có |O(x)| = |G : CG (x)| Gọi x1 , x2 , , xk phần tử đại diện lớp liên hợp G nằm H Vì H ◁ G với x ∈ H ta có O(x) ⊂ H Do đó, theo Mệnh đề 11, ta có k X X |CG (x)| = |O(xi )||CG (xi )| Pr(H, G) = |H||G| |H||G| = |H||G| x∈H k X i=1 i=1 k X k |G : CG (xi )||CG (xi )| = |G| = |H||G| |H| i=1 Vậy ta có điều phải chứng minh Ta cần bổ đề sau phép chứng minh kết so sánh độ giao hốn tương đối nhóm nhóm với độ giao hốn nhóm nhóm Bổ đề Cho H nhóm G Khi với phần tử x ∈ G |H : CH (x)| ⩽ |G : CG (x)| Hơn nữa, dấu đẳng thức xảy G = HCG (x) Chứng minh Lấy x ∈ G Khi đó, theo Mệnh đề ??, ta có |H||CG (x)| = |HCG (x)| ⩽ |G| |H ∩ CG (x)| Do |H| |G| ⩽ |H ∩ CG (x)| |CG (x)| = n ZR ≤ |f (x − y) − f (x)|ϱh (y)dy B(0,1/h) Z =ϵ ϱh (y)dy B(0,1/h) = ϵ Ta có điều phải chứng minh Chứng minh định lý 41 (i) Ta chưng minh kết n = Đủ để rằng, ϱ ∈ C1c (R), ϱ ∗ f ∈ Cm (R) với số nguyên m ≥ Cho m = giả sử ϱ ∈ C1c (R), ϱ ∗ f ∈ C1 (R) (ϱ ∗ f )′ (x) = (ϱ′ ∗ f )(x), ∀x ∈ R (15) Sau đó, ta chứng minh với m có kết luận Thật vậy, giả sử ϱ ∈ Cm c (R) m−1 ′ với m ≥ Khi ϱ ϱ ∈ Cc (R) Từ giả thiết ban đầu, ϱ ∗ f ∈ Cm−1 (R) (??) giữ Từ ϱ′ ∈ Ccm−1 (R) chí ϱ′ ∗ f ∈ Cm−1 (R), theo (??), (ϱ ∗ f )′ ∈ Cm−1 (R) giữ Vì vậy, ϱ ∗ f ∈ Cm (R), kết thúc chứng minh phát biểu (i) Ta chứng minh (??) Cho < |t| ≤ cố định x ∈ R, (ϱ ∗ f )(x + t) − (ϱ ∗ f )(x) − (ϱ′ ∗ f )(x) t Z ϱ(x − y + t) − ϱ(x − y) − tϱ′ ()x − y = f (y)dy t R (16) Lấy qua giới hạn (??) t → ∞ tốn hội tụ số hạng vế phải 40 Ta thấy, ϱ bị chặn R, Z z+t ′ ′ ′ (ϱ (s) − ϱ (z))ds ≤ |t|ϵ(|t|), |ϱ(z+t)−ϱ(z)−tϱ (z)| = ∀z ∈ R, ∀t ∈ [−1, 1], z (17) phần dư ϵ : [0, +∞) → [0, +∞) xác định sau ϵ(τ ) := sup{|ϱ′ (s) − ϱ′ (z)| : s, z ∈ R, |s − z| ≤ τ } ∈ [0, ∞), τ ∈ [0, +∞) Hơn nữa, ϱ′ liên tục R nên (18) lim ϵ(τ ) = Mặt khác, cho K0 := spt(ϱ), ϱ(x − y + t) − ϱ(x − y) − tϱ′ (x − y) = y ∈ / x + B(0, 1) − K0 , ∀t ∈ B(0, 1), x − y + t ∈ / K0 với t ∈ B(0, 1) Ký hiệu K := x + B(0, 1) − K0 , từ (??), ta suy |ϱ(x − y + t) − ϱ(x − y) − tϱ′ (x − y)||f (y)| ≤ |t|ϵ(|t|)χK (y)|f (y)|, ∀y ∈ R, ∀t ∈ [−1, 1] (19) Theo (??), (??), (??) định lý hội tụ bị trội, ta (??) (ii) Để đơn giản, ta ký hiệu ϱh ≡ ϱ Lưu ý, f ∗ ϱ : Rn → R liên tục, đo Đầu tiên, giả sử ≤ p < ∞ Khi Z Z Z

Ngày đăng: 06/07/2023, 10:00

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w