1. Trang chủ
  2. » Luận Văn - Báo Cáo

Sử dụng hàm h vào thống kê nhiều chiều và ứng dụng

110 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: SỬ DỤNG HÀM H VÀO THỐNG KÊ NHIỀU CHIỀU VÀ ỨNG DỤNG LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Mơ hình tốn học hình thức sử dụng ngơn ngữ tốn học để mô tả hệ thống đối tượng ngành khoa học tự nhiên chuyên ngành kỹ thuật (ví dụ: vật lý, sinh học, kỹ thuật điện tử) đồng thời khoa học xã hội (như kinh tế, xã hội học khoa học trị) Các kỹ sư, nhà khoa học sử dụng mô hình tốn học cơng cụ nghiên cứu Các mơ hình đưa mơ tả vấn đề đời thực mà chúng biểu thị dạng phương trình tốn học, có phương trình sai phân 117 2 Không gian hàm liên tục C0 (Ω) Định nghĩa (i) Cho tập A ⊂ Rn , C0 (A) := {f : A → R, f liên tục x ∈ A} (ii) Cho K ⊂ Rn tập compact cho f ∈ C0 (K) Ta ký hiệu ∥f ∥∞ số thực không âm xác định ∥f ∥∞ = ∥f ∥∞,K = sup |f (x)| x∈K ∥.∥∞ gọi chuẩn (hay chuẩn vô cùng) Định lý Cho Ω ⊂ Rn tập mở bị chặn Khi (C0 (Ω), ∥.∥∞ ) khơng gian Banach vô hạn chiều Chứng minh Ta giới hạn n = Ω = (a, b) ta phải chứng minh (C0 (Ω), ∥.∥∞ ) không gian định chuẩn vô hạn chiều R Ta chứng minh khơng gian Banach Nghĩa phải dãy Cauchy (fh )h ⊂ (C0 (Ω), ∥.∥∞ ) hội tụ (tại phần tử thuộc không gian) Giả sử (fh )h dãy Cauchy, theo định nghĩa ta có, ∀ϵ > 0, ∃k ∈ N cho ∥fh − fk ∥∞ = sup |fh (x) − fk (x)| < ϵ ∀h, k ≥ k x∈Ω Điều có nghĩa ∀ϵ > 0, ∃k ∈ N cho |fh (x) − fk (x)| < ϵ ∀h, k ≥ k, ∀x ∈ Ω (1) Từ (30), (fh (x))h ⊂ R dãy Cauchy Do dó: ∃f (x) := lim fh (x), h→∞ ∀x ∈ Ω (2) Từ (31), lấy qua giới hạn (30), cho k → ∞ ta ∀ϵ > 0, ∃k ∈ N cho |fh (x) − f (x)| ≤ ϵ ∀h ≥ k, x ∈ Ω, theo định nghĩa fh → f Ω Do dó f ∈ C0 (Ω) Tính compact (C0 (Ω), ∥.∥∞ ) Bây tìm hiểu đặc trưng tập compact (C0 (Ω), ∥.∥∞ ) Đầu tiên ta nhớ lại số khái niệm kết quan trọng liên quan đến chủ đề compact không gian metric Định nghĩa Cho (X, d) không gian metric ký hiệu B(x, r) hình cầu mở X , tâm x bán kính r > với x ∈ X (i) Điểm x0 ∈ X gọi điểm giới hạn tập A ⊂ X A ∩ (B(x0 , r)\{x0 }) ̸= ∅, ∀r > (ii) Tập A ⊂ X gọi bị chặn tồn R0 > cho d(x, y) ≤ R0 với x, y ∈ A (iii) Tập A ∩ X gọi bị chặn hoàn toàn với ϵ > 0, A phủ họ hữu hạn hình cầu B(x1 , ϵ), B(x2 , ϵ), , B(xN , ϵ), nghĩa A ⊂ ∪N i=1 B(xi , ϵ) (iv) Họ A ⊂ X gọi compact dãy dãy A có dãy hội tụ điểm thuộc A (v) Tập A ⊂ X gọi có tính chất Bolzano-Weierstrass (BW) tập vơ hạn A có điểm giới hạn thuộc A Nhận xét Dễ thấy tập bị chặn hoàn toàn tập bị chặn, điều ngược lại không không gian topo (X, τ ) tập hợp compact tập hợp compact dãy có tính chất (BW) Các tính chất khơng cịn giữ trường hợp tổng quát Định lý (Các tiên đề chuẩn tập compact không gian metric) Nếu A tập không gian metric (X, d), ta có điều sau tương đương: (i) A compact; (ii) A compact dãy; (iii) (A, d) đầy đủ bị chặn hoàn toàn; (iv) A có tính chất BW Nhận xét Nếu (X, d) đầy đủ, A ⊆ X đóng (A, d) đầy đủ Hệ Cho A ⊂ Rn Khi đó: A compact ⇔ A đóng bị chặn Định lý (Riesz) Cho (E, ∥.∥) không gian định chuẩn ta ký hiệu BE := {x ∈ E : ∥x∥ ≤ 1} Khi BE compact dimR E < ∞ Nhận xét Định lý 30 cho tập A bị chặn không gian định chuẩn vô hạn chiều (E, ∥.∥) không thiết phải bị chặn hồn tồn Ví dụ A = BE Định nghĩa Cho A ⊂ Rn Một họ tập F ⊂ C0 (A) gọi tựa liên tục với ϵ > 0, ∃δ(ϵ) > cho f ∈ F, |f (x) − f (y)| < ϵ với x, y ∈ A thỏa |x − y| < δ Ta thêm tiên đề chuẩn tập compact (C0 (K), ∥.∥∞ ) K ⊂ Rn compact Định lý (Arzelà - Ascoli) Cho K ⊂ Rn compact giả sử F ⊂ C0 (K) Khi F compact (C0 (K), ∥.∥∞ ) F là: (i) đóng (C0 (K), ∥.∥∞ ); (ii) bị chặn (C0 (K), ∥.∥∞ ); (iii) liên tục Hệ Cho K ⊂ Rn compact cho F ⊂ C0 (K) Giả sử F bị chặn liên tục Khi F compact (C0 (K), ∥.∥∞ ) Cụ thể hệ cho ta kết đặc biệt sau Hệ Cho fh : [a, b] → R, (h = 1, 2, ) dãy hàm liên tục Giả sử rằng: (i) ∃M > cho |f (x) ≤ M, ∀x ∈ [a, b], ∀h (ii) (fh )h liên tục đều, nghĩa là, ∀ϵ > 0, ∃δ(ϵ) > cho |fh (x) − fh (y)| < ϵ, ∀x, y ∈ [a, b] với |x − y| < δ, ∀h Khi ta có dãy (fhk )k hàm f ∈ C0 ([a, b]) thỏa mãn fhk → f [a, b] Định lý Giả sử M > số cho trước F = {f ∈ C1 ([a, b]) : ∥.∥C1 ≤ M } Khi F tập compact tương đối (C0 ([a, b]), ∥.∥∞ ); Chứng minh định lý 31 Tính đầy đủ: Giả sử có (i), (ii) (iii) ta F compact Theo tính chất tập compact định lý 29 ta F compact dãy Vì dãy (fh )h ∈ F có dãy (fhk )k hội tụ hàm f ∈ F , nghĩa là, ∥fhk − f ∥∞ → k → ∞ Nhớ K compact tách Giả sử D := {xi : i ∈ N} đếm trù mật K F bị chặn nghĩa tồn M1 > thỏa mãn ∥f − g∥∞ ≤ M1 , ∀f, g ∈ F Cụ thể ta thay f0 ∈ F , đó: ∥f0 − fh ∥∞ ≤ M1 , ∀h ∈ N Hơn ∥fh ∥∞ = ∥(fh − f0 ) + f0 ∥∞ ≤ ∥fh − f0 ∥∞ + ∥f0 ∥∞ ≤ M1 + ∥f0 ∥∞ := M2 Do ta có số M2 > thỏa mãn |fh (x)| ≤ M2 , ∀x ∈ K, ∀h Bây ta xây dựng dãy hội tụ theo trình chéo Cantor Bước 1: (fh (x1 ))h dãy số thực [−M2 , M2 ] Suy dãy có dãy (fh(1) (x1 ))h hội tụ R; Bước 2: Xét dãy (fh(1) (x2 ))h ⊂ [−M2 , M2 ] Do dãy (fh(2) (x2 ))h hội tụ Chú ý dãy (fh(2) (x1 ))h hội tụ có dãy (fh(1) (x1 ))h hội tụ Tiếp tục trình ta Bước k: Một dãy (fh(k) )h (fh(k−1) )h thỏa mãn (fhk (xj ))h hội tụ với j = 1, k Ta có tình sau đây: Định nghĩa: gk := fkk : K → R Lưu ý rằng, i = 1, 2, , dãy (gk )k≥i dãy (fki )k≥i Cụ thể, dãy (gk )k dãy (fh )h theo cách xây dựng ∀x ∈ D (3) (gk )k hội tụ (C0 (K), ∥.∥∞ ) (4) (gk (x))k hội tụ R Tiếp tục trình ta Sử dụng giả thiết F liên tục đều, tức ∀ϵ > 0, ∃δ(ϵ) > : x, y ∈ K |x − y| < δ ⇒ |f (x) − f (y)| < ϵ, ∀f ∈ F (5) Với ϵ > thay đổi tùy ý, δ thay đổi Bởi K bị chặn hồn tồn, σ > có họ hữu hạn hình cầu B(x1 , σ), , B(xN , σ) Rn thỏa mãn N = N (σ), xi ∈ K với i = 1, , N n [ K⊂ B(xi , σ) i=1 Do tính trù mật D K , tồn yi ∈ D ∩ B(xi , σ) với i = 1, , N Cụ thể n \ K⊂ B(yi , 2σ) i=1 Vì ta chọn σ = δ/2 Khi tồn N = N (σ) = N (δ) = N (ϵ) D′ := {y1 , , yn } ⊂ D thỏa mãn K⊂ N [ i=1 B(yi , δ) (6) Từ (32) dãy (gk (y1 ))k , , (gk (yN ))k , ¯ hội tụ, có số nguyên k¯ = k(ϵ) với |gk (yi ) − gr (yi )|, ϵ ¯ ∀i = 1, , N ∀k, r > k, Theo (35) (34) ∀x ∈ K, ∃yi ∈ D′ thỏa |x − yi | < δ ⇒ |gk (x) − gk (yi )| < ϵ, ∀k ∈ N Từ ta có |gk (x)−gr (x)| ≤ |gk (x)−gk (yi )|+|gk (yi )−gr (yi )|+|gr (yi )−gr (x)| ≤ ϵ+ϵ+ϵ = 3ϵ ∀x ∈ K ¯ với k, r ≥ k¯ Điều có nghĩa ϵ > tồn k¯ = k(ϵ) thỏa ∥gk − gr ∥∞ ≤ 3ϵ ¯ ∀k, r > k Nghĩa (gk )k dãy Cauchy (C0 (K), ∥.∥∞ ) Từ (C0 (K), ∥.∥∞ ) đầy đủ F đóng, suy tồn f ∈ F thỏa mãn lim ∥gk − f ∥∞ = k→∞ Từ (gk )k dãy dãy (fh )h , phải F compact dãy Sự cần thiết: Cần rằng, F compact (C0 (K), ∥.∥∞ ) ta có (i), (ii) (iii) Giả sử F compact khơng gian metric (C0 (K), ∥.∥∞ ), đó, theo tính chất tập compact khơng gian metric, F đóng bị chặn hồn tồn bị chặn Chỉ F liên tục đều, nghĩa ta phải chứng minh (34) Theo phản chứng, giả sử ∃ϵ0 > : ∀ > 0, ∃fδ ∈ F, xδ , yδ ∈ K với |xδ −yδ | < δ |fδ (xδ )−fδ (yδ )| ≥ ϵ0 Chọn δ = 1/h ký hiệu fh := f1/h , xh := x1/h yh := y1/h Khi ta xây dựng ba dãy (fh )h ⊂ F, (xh )h , (yh )h ⊂ K |xh − yh | < 1/h, |fh (xh ) − f (yh )| ≥ ϵ > 0, ∀h (7) Từ F K compact, tồn ba dãy (fh )h ⊂ F, (xh )h , (yh )h ⊂ K thỏa mãn lim xh = lim yh = z ∈ K fh → f ∈ F K h→∞ h→∞ Khi tồn lim fh (xh lim fh (yh ) = f (z) h→∞ h→∞ Lấy qua giới hạn (36) ta có mâu thuẫn Do đó, ta có điều phải chứng minh ĐỊNH LÍ FUBINI Định lý (G.Fubini - L.Tonelli) Cho F : R2n → [0, ∞] hàm đo (đối với M2n ) Khi (i) Hàm Rn ∋ y 7→ F (x, y) đo (đối với Mn ) với Ln hầu khắp nơi x ∈ Rn (ii) Hàm Z n R ∋ x 7→ F (x, y)dy Rn đo (đối với Mn ) (ii) Z F (x, y)dxdy = R2n Z Z dx Rn  F (x, y)dy Rn Z Z = dy Rn  F (x, y)dx Rn Bổ đề Cho f ∈ C0 (Rn ) Khi ϱ ∗ f → f tập compact Rn Chứng minh Cho K ⊂ Rn tập compact cho K ′ := K + B(0, 1) Theo tính liên tục f tập compact K ′ , ∀ϵ > tồn < δ = δ(ϵ, K ′ ) < thỏa mãn |f (x − y) − f (x)| ≤ ϵ, ∀x ∈ K, ∀y ∈ B(0, δ) (8) Khi đó, theo Mệnh đề 65 ta có X X n |CDn (ril )| = CDn (r ) + |CDn (ril )| 1⩽l⩽ ni −1 1⩽l⩽ ni −1 n l̸= 2i = |Dn | + X n i |CDn (ril+j s)| = 0⩽l⩽ ni −1  − |R1 | = 2n + n n i  −2 = n2 , i 4n n U n2 ,il+j = i i Từ suy X |CDn (x)| = 2n + x∈Ui,j Áp dụng Mệnh đề 40 ta có X Pr(Ui,j , Dn) = |Ui,j ||Dn | n(n + 2i + 4) n2 4n + = i i i |CDn (x)| = x∈Ui,j n(n + 2i + 4) n + 2i + = 2n i 4n 2n i Vậy ta có điều phải chứng minh Trong ví dụ sau ta tính lại độ giao hốn tương đối nhóm nhóm nhị diện D3 D4 cách áp dụng Mệnh đề 27 Ví dụ (i) Với n = 3, xét nhóm nhị diện D3 (cho Ví dụ 3) Các nhóm D3 R1 = ⟨r⟩, R3 = {1}; T0 = ⟨s⟩, T1 = ⟨rs⟩, T2 = ⟨r2 s⟩; D3 Khi Pr(R1 , D3 ) = 3+3 3+1 = , Pr(R3 , D3 ) = = 1; 2·3 2·3 29 Pr(T0 , D3 ) = Pr(T1 , D3 ) = Pr(T2 , D3 ) = 3+1 = ; 2·3 Pr(D3 , D3 ) = Pr(D3 ) = (ii) Với n = 4, xét nhóm nhị diện D4 (cho Ví dụ 4) Các nhóm D4 R1 = ⟨r⟩, R2 = ⟨r2 ⟩, R4 = {1}; T0 = ⟨s⟩, T1 = ⟨rs⟩, T2 = ⟨r2 s⟩, T3 = ⟨r3 s⟩; U2,0 = ⟨r2 , s⟩, U2,1 = ⟨r2 , rs⟩; D4 Khi Pr(R1 , D4 ) = 4+2·1 4+2·2 4+4 = , Pr(R2 , D4 ) = = 1, Pr(R4 , D4 ) = = 1; 2·4 2·4 2·4 Pr(T0 , D4 ) = Pr(T1 , D4 ) = Pr(T2 , D4 ) = Pr(T3 , D4 ) = Pr(U2,0 , D4 ) = Pr(U2,1 , D4 ) = 4+2 = ; 2·4 4+2·2+4 = ; Pr(D4 , D4 ) = Pr(D4 ) = 4·4 KHÔNG GIAN CÁC HÀM KHẢ TÍCH Định lý 13 Cho Ω ⊂ Rn tập mở Khi (Lp (Ω), ∥.∥Lp ) tách ≤ p < ∞ không tách p = ∞ Ta cần hai kết để chứng minh định lý ??: trước kết topo (Urysohn’s Lemma) sau quan hệ xấp xỉ không gian hàm liên tục Lp Định nghĩa Cho (X, τ ) không gian topo Khi C0c (X) := {f : X → R liên tục spt(f ) compact (X, d)} spt(f ) := Bao đóng{x ∈ X : f (x) ̸= 0} Bổ đề (Bổ đề Urysohn) Cho X compact địa phương không gian metric, cho K ⊂ X V ⊂ X , K compact V mở thỏa mãn K ⊂ V Khi đó, tồn hàm φ ∈ C0c (X) thỏa mãn ≤ φ ≤ 1, φ ≡ K spt(φ) ⊂ V 30 Định lý 14 (Xấp xỉ Lp hàm liên tục) Cho Ω ⊂ Rn tập mở Khi C0c (Ω) trù mật (Lp (Ω), ∥.∥Lp ), biết ≤ p < ∞ Chứng minh định lý 20 dựa hai kết tảng xấp xỉ hàm đo được, ta cần nhớ lại Định lý 15 (Xấp xỉ hàm đơn giản) Cho (X, M) không gian đo cho f : X → [0, +∞] hàm đo Khi tồn dãy hàm đơn giản đo sh : X → [0, +∞], (h = 1, 2, ) thỏa mãn tính chất (i) ≤ s1 ≤ s2 ≤ ≤ sh ≤ ≤ f ; (ii) lim sh (x) = f (x), ∀x ∈ X h→∞ Z Đặc biệt, f ∈ L (X, µ), nghĩa f dµ < ∞, sh → f X L1 (X, µ), nghĩa Z ∥f − sh ∥L1 (X,µ) := |f − sh |dµ → X Định lý 16 (Lusin - Dạng không gian metric compact địa phương) Cho µ độ đo Radon compact địa phương, không gian metric tách X Cho f : X → R hàm đo cho tồn tập Borel A ⊂ X với µ(A) < ∞, f (x) = ∀x ∈ X \A |f (x)| < ∞ µ− hầu khắp nơi x ∈ X Khi đó, với ϵ > 0, tồn g ∈ C0c (X) cho µ({x ∈ X : f (x) ̸= g(x)}) < ϵ Hơn nữa, g chọn cho supx∈X |g(x)| ≤ sup |f (x)| x∈X Chứng minh cho định lý Ta chia chứng minh định lý thành hai bước Bước 1: Ta chứng minh răng, ∀ϵ > 0, ∀f ∈ Lp (Ω) tồn hàm đơn giản đo s : Ω → R cho |{x ∈ Ω : s(x) ̸= 0} < ∞| (đặc biệt s ∈ Lp (Ω), ∀p ∈ [1, ∞]); (39) 31 ∥f − s∥Lp < ϵ (40) Đầu tiên, giả sử f ≥ Ω Theo xấp xỉ hàm không âm đo phương pháp hàm đơn giản (Định lý 21), tồn dãy hàm đơn giản đo sh : Ω → [0, +∞], (h = 1, 2, ) cho ≤ s1 ≤ s2 ≤ ≤ sk ≤ ≤ f ; lim sh (x) = f (x) h→∞ (41) ∀x ∈ Ω (42) Từ (10) ta sh ∈ Lp (Ω) |s ∈ Ω : sh (x) ̸= 0| < ∞ ∀h, (43) ∥sh − f ∥ ≤ 2f Ω, ∀h (44) Theo (11) (13), ta cso thể áp dụng định lý hội theo Lebesgue, ≤ p < ∞, ta lim ∥sh − f ∥Lp = (45) h→∞ Cho ϵ > 0, từ (14), tồn h = h(ϵ) ∈ N cho ∥sh − f ∥Lp < ϵ Nếu ta định nghĩa s := sh , theo (8) (9) Trường hợp tổng quát f : Ω → R chứng minh tách f = + f − f − áp dụng (8) (9), tách thành f + f − Bước 2: Ta ∀ϵ > 0, ∀f ∈ Lp (Ω), ∃g ∈ C0c (Ω) cho ∥f −g∥Lp < ϵ ϵ Cho f hàm đơn giản đo thỏa mãn (8) (9) với ϵ ≡ ký hiệu A := {x ∈ Ω : s(x) ̸= 0} Giả sử ∥s∥∞ > 0, khơng s ≡ ∈ C0c (Ω) kết thúc chứng minh Áp dụng định lý Lusin cho hàm s, tồn hàm g ∈ C0c (Ω) thỏa mãn |Ac | = |{x ∈ Ω : s(x) ̸= g(x)}| < ϵp , 4p ∥s∥p∞ (46) với |g(x)| ≤ ∥x∥∞ x ∈ Ω (47) 32 Chú ý ∥f − g∥Lp ≤ ∥f − s∥Lp + ∥s − g∥Lp < Bây ta đánh giá ∥s − g∥Lp Z Z ∥s − g∥pLp = |s − g|p dx = Ω ϵ + ∥s − g∥Lp |s − g|p dx ≤ 2p ∥s∥p∞ |Aϵ | < Aϵ (48) ϵp 2p (49) Vì (17) (18) kết thúc chứng minh Chứng minh định lý ?? Ta cần chứng minh (C0c (Ω), ∥.∥∞ ) tách (50) Thật vậy, ta giả sử rằng, từ (19), ta (Lp (Ω), ∥.∥∞ ) tách được, biết ≤ p < ∞ Đầu tiên, giả sử Ω bị chặn Cho D ⊂ (C0c (Ω), ∥.∥∞ ) trù mật đếm được, ta chứng minh D trù mật (Lp (Ω), ∥.∥Lp ) với ≤ p < ∞ (51) Từ định lý 20, ∀f ∈ Lp (Ω), ∀ϵ > 0, ∃g ∈ C0c (Ω) cho ϵ ∥f − g∥Lp < (52) D trù mật, tồn e g ∈ D cho ∥g − e g ∥∞ < ϵ 2|Ω|1/p Nhớ lại Bài tập ∥f ∥Lp ≤ |Ω|1/p ∥f ∥∞ , ∀f ∈ L∞ (Ω), biết |Ω| < ∞ Điều nghĩa ϵ ∥g − g∥Lp ≤ |Ω1/p |∥g − g∥∞ < (53) Do gợi ý (21) (22) ám (20) Bây giả sử Ω không bị chặn Theo kết biết topo, tồn dãy (Ωh )h tập mở bị chặn cho Ωh ⊂ Ωh ⊂ Ωh+1 Ω= ∪∞ h=1 Ωh 33 Hơn nữa, ý C0c (Ω) = ∪∞ h=1 Cc (Ωh ) (54) Theo (19) tồn tập Dh ⊂ (C0c (Ω), ∥.∥∞ ) trù mật đếm Cho D := ∪∞ h=1 Dh (20) giữ Từ định lý 20, ∀f ∈ Lp (Ω), ∀ϵ > 0, ∃g ∈ C0c (Ω) cho (21) Từ K := spt(g) tập compact chứa Ω, tồn h = h(g) = ϵ ∈ N cho K ⊂ Ωh Điều có nghĩa g ∈ C0c (Ωh ) ta có kết luận bước trước Bây ta chứng minh (19) Nhớ lại (C0 (K), ∥.∥∞ ) tách được, biết K ⊂ Rn tập compact (định lý 26) Cho (Ωh ) dãy tập mở bị chặn Rn Theo định nghĩa, C0c (Ωh ) ⊂ (C0 (Ω), ∥.∥∞ ) Vì (C0 (Ω), ∥.∥∞ ) tách nên với h, tồn tập D ⊂ (C0 (Ωh ), ∥.∥∞ ) trù mật đếm (55) Bây giờ, theo bổ đề Urysohn, ta sửa tập hợp hàm D eh ⊂ C0c (Ω) đẻ họ cho tập hợp hàm đếm D e D := ∪∞ h=1 Dh ⊂ (Cc (Ω), ∥.∥inf ty ) đếm trù mật (56) Áp dụng bổ đề Urysohn với K := Ωh−1 , V = Ωh cho φh ∈ C0 (Ω) cho ≤ φh (x) ≤ 1, ∀x ∈ Ω, φh (x) = 1, ∀x ∈ Ωh−1 spt(φh ) ⊂ Ωh xác định g ∈ Dh , g : Ωh → R, định nghĩa e g : Ω → R hàm ( g(x) x ∈ Ωh e g (x) := , nếux ∈ Ω \ Ωh cho e := {φhe D g : g ∈ D} e (h ∈ N) D := ∪∞ h=1 D Ta chứng minh (25) Theo cách xây dựng, D đếm Vì ta cần chứng minh trù mật (C0c , ∥.∥∞ ) 34 Sửa ϵ > 0, f ∈ C0c (Ω) cho K := spt(f ) ⊂ Ω compact Tồn h0 ∈ N cho K ⊂ Ωh0 ⊂ Ωh0 +1 Điều có nghĩa f ∈ C0c (Ωh0 ) ⊂ C0 (Ωh0 ) ⊂ C0 (Ωh0 +1 ) Theo (24), tồn f1 ∈ Dh0 +1 cho ∥f − f1 ∥∞,Ω := sup |f (x) − f1 (x)| < ϵ (57) x∈Ω Từ f ≡ Ωh0 +1 \ Ωh0 từ (26), suy |f1 (x)| < ϵ sup (58) x∈Ωh0 +1 \Ωh0 eh0 +1 , theo (26) (27) ta Bây ta định nghĩa f2 := φh0 +1 fe1 ∈ D ∥f − f2 ∥∞,Ω = sup |f (x) − f2 (x)| = x∈Ω sup |f (x) − φh0 +1 f (x)| ≤ x∈Ωh0 +1 ) ( max sup |f (x) − f1 (x)|, |f1 (x)| sup < ϵ x∈Ωh0 +1 \Ωh0 x∈Ωh0 Như (25) Cuối ta chứng minh (L∞ (Ω), ∥.∥L∞ ) khơng tách Ta tìm họ rời khơng đếm Ui : i ∈ I tập mở L∞ (Ω) Cho a ∈ Ω cho ωa := B(a, ) > với B(a, ) ⊂ Ω Định nghĩa n o Ua := f ∈ L∞ (Ω) : ∥f − χωa ∥L∞ < a ∈ I := Ω Chú ý • Ua mở (L∞ (Ω), ∥.∥L∞ ), ∀a ∈ Ω: hiển nhiên • Ua ∩ Ub = ∅ a ̸= b, thật vậy, theo phản chứng, f ∈ Ua ∩ Ub , điều nghĩa ∥χωa − χωb ∥L∞ ≤ ∥χωa − f ∥L∞ + ∥f − χωb ∥L∞ < 1 + = 2

Ngày đăng: 04/07/2023, 15:53

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w