GVHD Trần Thị Kim Nhung Ngày soạn 07/03/2013 SV Phạm Thị Trúc Linh Tiết 56GIÁO ÁN CHƯƠNG IV BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN §1 LIÊN HỆ GIỮA THỨ TỰ VÀ PHÉP CỘNG I KẾT QUẢ CẦN ĐẠT Kiến thức Nhận biết đ[.]
GVHD: Trần Thị Kim Nhung Ngày soạn: 07/03/2013 SV: Phạm Thị Trúc Linh Tiết: 56 GIÁO ÁN CHƯƠNG IV: BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN §1: LIÊN HỆ GIỮA THỨ TỰ VÀ PHÉP CỘNG I KẾT QUẢ CẦN ĐẠT Kiến thức: - Nhận biết vế trái, vế phải dùng dấu bất đẳng thức - Nắm tính chất liên hệ thứ tự phép cộng dạng bất đẳng thức - Biết chứng minh bất đẳng thức nhờ so sánh giá trị vế bất đẳng thức Kỹ năng: - Chứng minh bất đẳng thức nhờ so sánh giá trị vế bất đẳng thức vận dụng tính chất liên hệ thứ tự phép cộng Thái độ: - Tập trung, nghiêm túc, cẩn thận II CHUẨN BỊ - Giáo viên: SGK, giáo án, bảng phụ, viết - Học sinh: SGK, thước kẻ, … III KẾ HOẠCH BÀI GIẢNG Thời gian 15’ Nội dung Hoạt động GV HS - GV: Chúng ta học, phương trình biểu thị quan hệ hai biểu CHƯƠNG IV: BẤT thức, quan hệ nhau, hai biểu PHƯƠNG TRÌNH BẬC thức cịn có quan hệ khơng NHẤT MỘT ẨN biểu thị qua bất đẳng thức §1: LIÊN HỆ GIỮA THỨ TỰ VÀ PHÉP CỘNG Nhắc lại thứ tự tập hợp số a Các khái niệm: a, b R ta có - GV: Khi so sánh hai số xảy + a lớn b (a > b) + a nhỏ b (a < b) + a b (a = b) trường hợp nào? - Yêu cầu HS trả lời - GV: So sánh -2 - HS: -2 < -4 -3 -2 -1 - GV: Biểu diễn -2 trục số ta thấy (-2) nằm vị trí so với 3? - HS: -2 bên trái - GV: Khi biểu diễn số trục số nằm ngang, điểm biểu diễn số nhỏ nằm bên trái điểm biểu diễn số lớn - Ví dụ 1: ?1 - GV: Yêu cầu so sánh hai số √2 - HS: √ < số điểm trục số - GV yêu cầu làm ?1 - HS: a) 1,53 < 1, b) -2,37 > -2,41 12 2 c) −18 = nằm bên trái √2 số 3 13 12 = < 20 20 d) b Ví dụ - GV: Với x số thực bất kỳ, so sánh + x2 với x x2 với số - HS: Nếu x số dương x2 > Nếu x số âm x2 > Nếu x x2 = - GV: Vậy x2 lớn với + - x2 với x x2 x, ta viết x ≥ với x - GV: Tương tự, với x số thực bất kì, nên - x2 so sánh –x2 với - HS: Với x số thực bất kì, –x nhỏ 0, ta viết –x2 ≤ * Lưu ý: 5’ + a không nhỏ b (hay a lớn b).Kí hiệu: a b + a không lớn b (hay a nhỏ b).Kí hiệu: a b - GV: Nếu a không nhỏ b ta viết - HS lên bảng viết a ≥ b + c số khơng âm Kí hiệu: c + y không lớn ta viết y ? Bất đẳng thức - HS lên bảng viết a ≤ b - GV: Tổng quát, c số không âm ta viết ? - HS lên bảng viết c ≥ - GV: Nếu y không lớn , ta viết - HS lên bảng viết y ≤ - GV chuyển ý: Tất hệ thức vừa nêu bất đẳng thức - GV giới thiệu khái niệm bất đẳng thức * Khái niệm: Ta gọi hệ thức dạng a < b (hay a > b, a ≤ b , a ≥ b) bất đẳng thức - Trong đó: a vế trái b vế phải - Ví dụ: > - GV: Hãy lấy ví dụ bất đẳng thức vế trái, vế phải bất đẳng thức đó? - HS lấy ví dụ vế trái, vế phải bất đẳng thức - GV: Ta có: > Hãy cộng hai vế với so sánh - HS: + = 10 > + = - GV chuyển ý: Có thể kết luận hai vế bất đẳng thức cộng với số? 16’ Liên hệ thứ tự phép Cho trục số: cộng -4 -3 -2 -1 -4 -3 -2 -1 - Ví dụ 2: ?2 - GV : Cho biết bất đẳng thức biểu diễn mối quan hệ (-4) - HS: – < - GV: Khi cộng vào hai vế bất đẳng thức đó, ta bất đẳng thức ? - HS : - + < + hay -1 < - GV (Bảng phụ): Hình vẽ minh họa kết -3 -2 -1 -4 : Khi cộng vào hai vế bất đẳng thức –4 < ta bất đẳng thức -3 -2 -1 -4 -1 < chiều với bất đẳng thức cho (GV giới thiệu hai bất thức chiều) - GV: Dự đoán kết cộng số c vào hai vế bất đẳng thức - HS: -4 + c < + c - Tính chất: Với ba số a, b c, - GV: Liên hệ thứ tự phép cộng ta ta có : có tính chất sau (Bảng phụ) + Nếu a < b a + c < b + c - GV: Hãy phát biểu thành lời tính chất + Nếu a ≤ b a + c ≤ b + c - HS phát biểu thành lời + Nếu a > b a + c > b + c + Nếu a ≥ b a + c ≥ b + c * Chú ý: a < b a + c < b + c (-4) + 2+3 gọi hai bất đẳng thức chiều - Ví dụ 3: ?3 - Ví dụ 4: ?4 - GV: Tương tự ví dụ làm ?3, ?4 - Hai HS lên bảng trình bày ?3 : Có - 2004 >- 2005 => - 2004 + ( -777) > -2005 + (-777) theo tính chất liên hệ thứ tự phép cộng ?4 : Có 8’ * Củng cố √2 √2 √2