1. Trang chủ
  2. » Giáo án - Bài giảng

Chuong 1 1 TOÁN KỸ THUẬT

31 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 31
Dung lượng 719,56 KB

Nội dung

Slide 1 Phần 1 Giải tích Fourier Bài giảng Toán Kỹ Thuật 2012  Chương 0 Ôn tập số phức  Chương 1 Chuỗi Fourier  Chương 2 Tích phân Fourier và biến đổi Fourier 1 Chương 1 Chuỗi Fourier Bài giảng Toá[.]

Phần 1: Giải tích Fourier  Chương : Ơn tập số phức  Chương : Chuỗi Fourier  Chương : Tích phân Fourier biến đổi Fourier Bài giảng Toán Kỹ Thuật 2012 Chương Chuỗi Fourier       1.1 Hàm tuần hoàn 1.2 Chuỗi Fourier hàm tuần hoàn 1.3 Các cơng thức khác để tính hệ số Fourier 1.4 Khai triển bán kỳ 1.5 Các dạng khác chuỗi Fourier 1.6 Ứng dụng chuỗi Fourier Bài giảng Toán Kỹ Thuật 2012 1.1 Hàm tuần hoàn  Định nghĩa 1.1 hàm f(t) gọi tuần hoàn tồn số dương T cho f(t+T) = f(t) với t miền xác định f(t)  T gọi chu kỳ (chu kỳ bàn ) Phân loại:   f(t) tuần hoàn sin  f(t) tuần hồn khơng sin Bài giảng Tốn Kỹ Thuật 2012 Ví dụ Bài giảng Tốn Kỹ Thuật 2012 1.2 Chuỗi Fourier hàm tuần hoàn  Chuỗi Fourier hàm tuần hoàn f(t) chu kỳ T laø : a0 +∞ + ∑ ( an cos nω0t + bn sin nω0t ) f (t ) = n =1 Với : n = 1,2 … ω0 = 2π/T = tần số a0, an , bn = hệ số khai triển chuỗi Fourier Bài giảng Tốn Kỹ Thuật 2012 Các hệ số khai triển Fourier  Giá trị tích phân xác định T ∫ −T T 2 ∫ T = cos( mω 0t ) ∫ −T sin( nω0t= ) dt ∀m, n = nω0t ) dt cos( mω0t ) sin( ∀m, n 0  = m ω t n ω t dt cos( ) cos( ) T 0 ∫T  − 2 T 0  ∫T sin(mω0t ) sin(nω0t )dt =  T  − 2 m≠n −T T 2 Bài giảng Tốn Kỹ Thuật 2012 m=n m≠n m=n Các hệ số khai triển Fourier a0 +∞ + ∑ ( an cos nω0t + bn sin nω0t ) f (t ) = n =1 T ∫ −T T cos(mω = 0t ) ∫ −T sin(nω0t= )dt ∀m, n T 2 a0 = ∫ f (t )dt T −T Bài giảng Toán Kỹ Thuật 2012 Các hệ số khai triển Fourier a0 +∞ + ∑ ( an cos nω0t + bn sin nω0t ) f (t ) = n =1 T ∫ = nω0t ) dt cos( mω0t ) sin( ∀m, n 0  = ω ω m t n t dt cos( ) cos( ) T 0 ∫T  − 2 m≠n −T T 2 T m=n 2 an = ∫ f (t ) cos(nω0t )dt T −T Bài giảng Toán Kỹ Thuật 2012 Các hệ số khai triển Fourier a0 +∞ + ∑ ( an cos nω0t + bn sin nω0t ) f (t ) = n =1 T ∫ −T cos( mω0t ) sin( = nω0t ) dt 0  sin( m ω t ) sin( n ω t ) dt = T 0 ∫T  − 2 T ∀m, n T m≠n m=n 2 bn = ∫ f (t ) sin(nω0t )dt T −T Bài giảng Toán Kỹ Thuật 2012 Điều kiện tồn  Định lý 1.1: (Định lý Dirichlet) Nếu hàm f tuần hoàn chu kỳ T thỏa điều kiện Dirichlet khoảng I Thì chuỗi Fourier f hội tụ : ● f (t ) f liên tục t + −   + ( ) ( ) f t f t ● k k   f gián đoạn t Bài giảng Toán Kỹ Thuật 2012 10 Ví dụ tìm khai triển Fourier dùng cơng thức lặp Xác định hệ số chuỗi Fourier hàm tuần hoàn mà định nghĩa chu kỳ −1 − < t < −1  −1 < t <  f (t ) =  < t

Ngày đăng: 12/04/2023, 20:42