1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn tập toán 12 giải chi tiết (512)

13 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 1,32 MB

Nội dung

ĐỀ MẪU CĨ ĐÁP ÁN ƠN TẬP KIẾN THỨC TỐN 12 Thời gian làm bài: 40 phút (Không kể thời gian giao đề) - Họ tên thí sinh: Số báo danh: Mã Đề: 052 Câu Đường tiệm cận ngang đồ thị hàm số A Đáp án đúng: B B có phương trình C Giải thích chi tiết: Đường tiệm cận ngang đồ thị hàm số A Lời giải B Ta có nên C D D có phương trình đường tiệm cận ngang đồ thị hàm số Câu Trong không gian với hệ tọa độ chứa đường thẳng tạo với mặt phẳng cách mặt phẳng khoảng bằng: A Đáp án đúng: D B , cho đường thẳng Gọi mặt phẳng góc có số đo nhỏ Điểm C D Giải thích chi tiết: có VTCP có VTPT Gọi góc tạo Từ hình vẽ, ta có Ta thấy , ta có Vậy góc nhỏ *Viết phương trình mặt phẳng -CÁCH 1: hay Mặt phẳng Ta có Nếu suy Nếu từ loại suy suy Mặt phẳng qua điểm Vậy phương trình mặt phẳng -CÁCH Gọi phẳng chứa chứa suy Suy góc nhỏ và cắt theo giao tuyến cho nhận Do đó, mặt phẳng thỏa đề mặt làm vec tơ phương qua pháp tuyến nhận Vậy Câu Biết với làm vectơ phân số tối giản Tính A ỵ Dng 05: PP i bin x = u(t)- hàm công thức xđ B C D Đáp án đúng: C Giải thích chi tiết: Lời giải Đặt Đối cận: Khi đó: Câu Tìm A để có nghiệm thoả B C D Đáp án đúng: D Câu Tìm giá trị tham số m để phương trình nghiệm lớn A -3 < m < - C m > Đáp án đúng: A Câu Với A số thực dương tùy ý, có ba nhiệm phân biệt có hai B -1 D -3 < m < bằng? B C D Đáp án đúng: B Câu Đường cong hình vẽ đồ thị hàm số nào? A y=− x + x − x4 − x −1 Đáp án đúng: C C y= Câu Với số tùy ý, họ nguyên hàm hàm số A C Đáp án đúng: D B D Câu Có số nguyên thỏa mãn A 33 B 32 Đáp án đúng: B Câu 10 Trong không gian Gọi đó: A x +2 x −3 x4 x2 D y= − −1 B y=− C 31 D cho mặt cầu mặt phẳng điểm mặt cầu cho khoảng cách từ B C Đáp án đúng: C D đến lớn Khi Giải thích chi tiết: Mặt cầu có tâm mặt phẳng cắt mặt cầu theo đường tròn Gọi điểm mặt cầu cho khoảng cách từ vuông qua đến lớn Khi thuộc đường thẳng vng góc với Thay vào mặt cầu Với Với Vậy Câu 11 Có giá trị nguyên tham số m để phương trình nghiệm thực thỏa mãn A Đáp án đúng: D B Câu 12 Cho , A Đáp án đúng: D C Đáp án đúng: C Câu 14 C , B Câu 13 Trong không gian phương ? A có hai D Tìm tọa độ C D , cho đường thẳng Vectơ vectơ B D Cho lăng trụ ABC A′ B ′ C′ có đáy tam giác cạnh Hình chiếu vng góc A′ lên mặt phẳng ′ trùng với trung điểm BC Góc tạo cạnh bên A A với mặt đáy Thể tích khối lăng trụ cho A B C Đáp án đúng: C Câu 15 Hàm số y=−4 x 3−6 x 2−3 x +2 có điểm cực trị? A B C Đáp án đúng: A Câu 16 Khối lập phương khối đa diện loại nào? A Đáp án đúng: A B C có B D C ; Đáp án đúng: D B ; D ; Giải thích chi tiết: Các đường tiệm cận đứng tiệm cận ngang đồ thị hàm số A ; Lời giải B Đồ thị hàm phân thức Câu 18 Các đường tiệm cận đứng tiệm cận ngang đồ thị hàm số ; Tính bán kính đường trịn ngoại tiếp tam giác C D Giải thích chi tiết: Ta có: A D Giải thích chi tiết: Khối lập phương khối đa diện loại Câu 17 Cho tam giác A Đáp án đúng: A D ; C ; D ; có tiệm cận đứng tiệm cận ngang Do đồ thị hàm số có tiệm cận đứng tiệm cận ngang ; Câu 19 Hàm số đồng biến ℝ ? A y=− x 3+3 x +1 B y=x + x2 − x −1 C y= D y=x − cos x x−1 Đáp án đúng: D Giải thích chi tiết: Lời giải Xét hàm số y=x − cos x có y ′ =1+sin x ≥ 0, ∀ x ∈ ℝ nên hàm số đồng biến ℝ Câu 20 Trong khẳng định sau, khẳng định sai? A C Đáp án đúng: D Giải thích chi tiết: Ta có: Câu 21 Thể tích D sai khối lăng trụ tam giác có tất cạnh A Đáp án đúng: B B Câu 22 Xét tất số thực dương A Đáp án đúng: A Câu 23 Tìm số B B khác C thỏa mãn C D Khí D nhỏ thỏa mãn bất phương trình A B C D Đáp án đúng: D Câu 24 Cho hình nón có độ dài đường sinh đường kính đáy Diện tích đáy hình nón khối nón cho Thể tích A B C D Đáp án đúng: C Giải thích chi tiết: Cho hình nón có độ dài đường sinh đường kính đáy Diện tích đáy hình nón Thể tích khối nón cho A B Lời giải C D Theo đề bài, ta có Mà Do Chiều cao hình nón Vậy thể tích khối nón là: Câu 25 Cho hàm số bậc bốn Số điểm cực trị hàm số A 10 Đáp án đúng: A Giải thích chi tiết: có bảng biến thiên sau: B 11 Từ bảng biến thiên ta thấy C D 13 có nghiệm phân biệt, gọi nghiệm với Khi đó: (với ) Ta có , có bảng biến thiên Vậy nghiệm kép Ta sau: có 10 điểm cực trị Câu 26 Trong không gian với hệ tọa độ , cho hai điểm Viết phương trình tắc đường thẳng cho khoảng cách từ A đến qua mặt phẳng , song song với mặt phẳng lớn C Đáp án đúng: C , B D Giải thích chi tiết: Gọi chứa Ta thấy Khi song song Kết hợp với điểm Câu 27 đạt giá trị lớn vng góc với Suy VTCP suy vng góc với giá thuộc VTPT nên ta chọn đáp án C Đồ thị sau hàm số ? A B C D Đáp án đúng: C Giải thích chi tiết: Dựa vào đồ thị ta kết luận a < 0, nên loại phương án A C Điểm cực tiểu (0;-4), vào thỏa, ta chọn B Câu 28 Trong không gian Gọi , cho điểm đường thẳng qua điểm góc mặt phẳng Tọa độ điểm A , , mặt phẳng đường thẳng vng góc với mặt phẳng điểm thuộc đường thẳng B C Đáp án đúng: D D , hình chiếu vng cho diện tích tam giác nhỏ Giải thích chi tiết: Phương trình đường thẳng là: Tọa độ điểm ứng với nghiệm phương trình: Như Gọi hình chiếu Do đó, diện tích tam giác điểm thuộc đường thẳng Đường thẳng Ta có: nhỏ độ dài nên có véc-tơ phương nhỏ , nên: 10 Như vậy, nhỏ Câu 29 Cho mặt phẳng đường thẳng đường thẳng B Câu 30 Trong không gian trục hoành A Đáp án đúng: B C , cho điểm B Giải thích chi tiết: Trong khơng gian A Lời giải Gọi Suy ra: Tính cosin góc mặt phẳng A Đáp án đúng: C điểm D Tìm tọa độ hình chiếu vng góc điểm C , cho điểm D lên Tìm tọa độ hình chiếu vng góc lên trục hồnh B hình chiếu vng góc C D lên trục hoành Vậy Câu 31 Cho hàm số y=f ( x ) xác định, liên tục ℝ có bảng biến thiên sau: Tìm tất giá trị thực tham số m để phương trình f ( | x | )=2m+1 có bốn nghiệm thực phân biệt 1 A −1 ≤ m≤ − B − ≤ m≤ 2 1 C −1< m

Ngày đăng: 11/04/2023, 19:01

w