1. Trang chủ
  2. » Giáo Dục - Đào Tạo

rút gọn căn thức

12 573 2

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 596 KB

Nội dung

Các dạng toán rút gọn căn thức

Trang 1

CHUYÊN ĐỀ CĂN THỨC BẶC HAI - ÔN THI TS 10

Chuyên đề: RÚT GỌN CÁC BIỂU THỨC CHỨA CĂN BẬC HAI VÀ MỘT SỐ BÀI

TOÁN PHỤ

1, KIẾN THỨC 6, 7, 8 QUAN TRỌNG CẦN NHỚ.

a, Tính chất về phân số (phân thức): ( 0, 0)

= MB

B

A M B

M A

b, Các hằng đẳng thức đáng nhớ:

+) (A + B) 2 = A 2 + 2AB + B 2

+) (A - B) 2 = A 2 - 2AB + B 2

+) A 2 - B 2 = (A - B)(A + B)

+) (A + B) 3 = A 3 + 3A 2 B + 3AB 2 + B 3

+) (A - B) 3 = A 3 - 3A 2 B + 3AB 2 - B 3

+) A 3 + B 3 =(A + B)(A 2 - AB + B 2 )

+) A 3 - B 3 =(A - B)(A 2 + AB + B 2 )

2, CÁC KIẾN THỨC VỀ CĂN BẬC HAI

1) Nếu a ≥ 0, x ≥ 0, a = x ⇔ x2 = a

2)Để A có nghĩa thì A ≥ 0

3) A2 = A

4) AB = A B ( với A ≥ 0 và B ≥ 0 ) 5)

B

A B

A = ( với A ≥ 0 và B > 0 ) 6) A2B = A B (với B ≥ 0 ) 7) A B = A2B ( với A ≥ 0 và B ≥ 0 )

A B =− A2B ( với A < 0 và B ≥ 0 ) 9)

B

AB B

A = ( với AB ≥ 0 và B ≠ 0 )

10)

B

B A B

A = ( với B > 0 )

11) C C( A B2 )

A B

A B =

±

m ( Với A ≥ 0 và A ≠ B 2 )

12) C C( A B)

A B

±

m ( với A ≥ 0, B ≥ 0 và A ≠ B )

II CÁC BÀI TOÁN RÚT GỌN:

1 RÚT GỌN CÁC BIỂU THỨC KHÔNG CHỨA BIẾN

1.1/Rút gọn nhờ sử dụng hằng đẳng thức A2 = A

*)Ví dụ 1: Rút gọn:

Trang 2

CHUYÊN ĐỀ CĂN THỨC BẶC HAI - ÔN THI TS 10

a) (−3)2 + (−8)2 ; b) (3− 5)2

c) (1− 2)2 − (1+ 2)2 d) ( 5−3)2 + (2− 5)2

Giải:

a) ( 3)− 2 + −( 8)2 = − + − = + =3 8 3 8 11

(3− 5) = −3 5 = −3 5

c) (1− 2)2 − (1+ 2)2 = −1 2 − +1 2 = − +( 1 2) (− +1 2) = − +1 2 1− − 2= −2

d) ( 5 3)− 2 + (2− 5)2 = 5 3− + −2 5 = − 5 3 2+ − + 5 1=

*)Ví dụ 2: Rút gọn :

a) A= 4−2 3 b) B = 14+8 3.(2 2 − 6);

c) C = 7−4 3 + 7+4 3 d) D = 5−2 7−2 6

Giải:

a) A = 3−2 3+1= ( 3−1)2 = 3−1= 3−1

b) B = 14+8 3.(2 2 − 6)= 14+2 48(2 2− 6)=

) 6 8 (

6 6

8

2

= ( 8+ 6)2( 8− 6)=( 8+ 6)( 8− 6)=8−6=2

c) C = 7−4 3 + 7+4 3 = 7−2.2 3 + 7−2.2 3 = (2− 3)2 + (2+ 3)2

= 2- 3 + 2 + 3 = 4

d) D = 5−2 7−2 6

2

5 2 6 2 6 1 5 2 ( 6 1)

5 2( 6 1) 7 2 6

= − − = −

= ( 6−1)2 = 6−1

*)Ví dụ 3: Rút gọn A = 2− 3+ 2+ 3

Giải:

Trang 3

CHUYÊN ĐỀ CĂN THỨC BẶC HAI - ÔN THI TS 10

4 2 3− + 4 2 3+ = 3 2 3 1− + + 3 2 3 1+ + = 3 1− + 3 1+

= 3 1− + 3 1+ = 3 1− + 3 1 2 3+ =

Suy ra A = 6

Cách 2: Ta có: A2 =2− 3+2 4−3+2+ 3 =6

Do A > 0 nên A = 6

*)Bài tập:

Bài 2: Tính: a) 8−2 7 b) 4− 7 − 4+ 7 c) 3− 5 + 3+ 5

Bài 3: Rút gọn A = 3− 1− 21−12 3

Bài 4: Rút gọn A = 6+2 3+2 2+2 6

1.2/ Rút gọn vận dụng các quy tắc khai phương, nhân chia các căn bậc hai:

*)Ví dụ 1:Tính

a) 14 56 b) 12

7

3 3 2

1

Giải:

a) 14 56 = 14.56 = 14.14.4 = 142.4 = 142. 4 =14.2=28

7

24 2

7 12 7

24 2

7 12 7

3 3 2

1

c) 4− 7 4+ 7 = (4− 7 4)( + 7) = 16 7− = 9 3=

*)Ví dụ 2: Rút gọn: ) 5 a + 20− 80 b) 3+ 12 3 2 24+

Giải:

) 5 20 80 5 2 5 4 5 (1 2 4) 5 5

) 3 12 3 2 24 3 2 3 3.2.2 3 (1 2 12) 3 15 3

a

b

+ − = + − = + − = −

*) Bài tập:

Bài 1 : Tính: a) 12 75 b)

25

36 25

24 1 9 7

2 c) 0,04.25; d) 90.6,4

Trang 4

CHUYÊN ĐỀ CĂN THỨC BẶC HAI - ÔN THI TS 10

e) 9− 17 9+ 17

Bài 2: Rút gọn:

a) 12+5 3− 48 b) 5 5+ 20−3 45

c) 2 32+4 8−5 18 d) 3 12−4 27+5 48

e) 12+ 75− 27 f) 2 18−7 2+ 162

1.3/ Rút gọn biểu thức chứa căn thức bậc hai ở mẫu vận dụng trục căn thức ở mẫu bằng

phương pháp nhân liên hợp.

*)Ví dụ 1: Trục căn ở mẫu các biểu thức sau

a)

2 3

1

− b) 2 3

1

+ c) 1 2

1

− d) 1 3

1 3 1

1

+

Giải:

3 2

3 2 ( 3 2)( 3 2)

4 3

2 3

1 2

1 2

a

b

c

+

+

= = − +

d)

3 1

1 3

1

1

+

) 3 1 ( 3 1 3 1

3 1 3 1

3 1 ) 3 1 )(

3 1 (

3 1 )

3 1 )(

3 1 (

3 1

− +

=

+

=

− +

− +

− +

2

3 2 2

3 1 3

=

+

+

Giải:

7 5 3 2 7 5 3 2 7

5 3 2

25 18

5 3 2 (5 3 2) 5 3 2

11 2 3 1 11 2 3 1 11

2 3 1

12 1

2 3 1 (2 3 1) 2 3 1

*)Ví dụ 3: Rút gọn:

A =

2 3

3 2 : 4 3 5

2 3

5

2

+





+

Trang 5

CHUYÊN ĐỀ CĂN THỨC BẶC HAI - ÔN THI TS 10

*)Bài tâp: Rút gọn các biểu thức sau:

a) 1 3

2 3−

− b)

3 1− 3 1

− + c)

3 1 1− 3 1 1

+ − + +

1 2 − 2 3+ 3 4 − 4 5+ 5 6 − 6 7 + 7 8 − 8 9

1.4/

Rút gọn biểu thức chứa căn thức bậc hai ở mẫu nhờ phân tích thành nhân tử:

*) Ví dụ 1: Rút gọn các biểu thức:

a) 3 3

3 1

− b)

− − +

c) 2 3 3 2 3 3

 +   − 

 + ÷  − ÷

    d)

5 7 5 11 11

+ + +

+

Giải:

a) 3 3 3( 3 1)

3

b) 3 6 2 8 3 1( 2) (2 1 2)

3 2

c) 3 3 3 3 3( 3 1) 3( 3 1)

= +(2 3 2) ( − 3) = − =4 3 1

d) 5 7 5 11 11 5( 5 7) 11 11 1( )

5 7 11

*)Bài tâp: Rút gọn các biểu thức sau:

a) 15 12

5 2

− b)

5 5 10

5 1 5

− −

c) 1 5 5 1 5 5

 +   − 

 + ÷  − ÷

    d)

2 3 2 5 5

− + +

+

2 RÚT GỌN CÁC BIỂU THỨC CHỨA BIẾN VÀ CÁC BÀI TOÁN PHU

2.1/ CÁC BƯỚC THỰC HIÊN PHẦN RÚT GỌN:

Bước  : Tìm ĐKXĐ của biểu thức (Nếu bài toán chưa cho)(Phân tích mẫu thành nhân tử, tìm điều

kiện để căn có nghĩa, các nhân tử ở mẫu khác 0 và phần chia khác 0)

Bước  :Phân tích tử và mẫu thành nhân tử (rồi rút gọn nếu được).

Bước  : Quy đồng, gồm các bước:

Trang 6

CHUYÊN ĐỀ CĂN THỨC BẶC HAI - ÔN THI TS 10

+ Chọn mẫu chung : là tích củc nhân tử chung và riêng, mỗi nhân tử lấy số mũ lớn nhất

+ Tìm nhân tử phụ: lấy mẫu chung chia cho từng mẫu để được nhân tử phụ tương ứng

+ Nhân nhân tử phụ với tử – Giữ nguyên mẫu chung

Bước  : Bỏ ngoặc: bằng cách nhân đa thức hoặc dùng hằng đẳng thức.

Bước  : Thu gọn: là cộng trừ các hạng tử đồng dạng.

Bước  : Phân tích tử thành nhân tử (mẫu giữ nguyên).

Bước  : Rút gọn.

Lưu ý: Bài toán rút gọn tổng hợp thường có các bài toán phụ: tính giá trị biểu thức khi cho giá trị của ẩn; tìm điều kiện của biến để biểu thức lớn hơn (nhỏ hơn) một số nào đó; tìm giá trị của biến để biểu thức có giá trị nguyên; tìm giá trị nhỏ nhất, lớn nhất của biểu thức Do vậy ta phải áp dụng các phương pháp giải tương ứng, thích hợp cho từng loại toán.

2.2/ CÁC VÍ DỤ VỀ BÀI TẬP RÚT GỌN TỔNG HỢP:

*)Ví dụ 1: Cho biểu thức: a a a 2 a

a) Tìm ĐKXĐ, rút gọn A

Bài giải: ĐKXĐ: 0

1 0

a a



 − ≠

0 1

a a

 ≠

Ta có:

a a a 2 a a ( a 1) a ( a 2)

= ( a + 1) : ( a − 1)

Vậy A = 1

1

a a

+

b) Tìm a để A = 5 (Dạng bài toán phụ thứ nhất).

Phương pháp: Thay A bởi biểu thức vừa rút gọn được vào và giải phương trình:

1 5

1

a

a+ =

− ⇔ a+ =1 5( a− ⇔1) a+ =1 5 a− ⇔5 4 a =6

3 9

⇔ = ⇔ = (TMĐK)

Vậy với a = 9

4 thì A = 5.

c) Tính giá trị của A khi a = 3 + 2 2 (Dạng bài toán phụ thứ hai).

Phương pháp: Thay giá trị của biến vào biểu thức vừa rút gọn được rồi thực hiện các phép tính (Lưu

ý: Có thể tính giá trị a rồi thay vào).

Trang 7

CHUYÊN ĐỀ CĂN THỨC BẶC HAI - ÔN THI TS 10

Ta có: a= +2 2 2 1 ( 2)+ = 2+2 2.1 1+ =2 ( 2 1)+ 2

Suy ra a = 2 1+ = 2 1+ Do đó thay vào biểu thức A ta được:

A = 2 1 1 2 2 1 2

2 1 1 2

+ + = + = + + −

d) Tìm giá trị a nguyên để A nhận giá trị nguyên (Dạng bài toán phụ thứ ba).

Phương pháp: Chia tử cho mẫu, tìm a để mẫu là ước của phần dư (một số), chú ý điều kiện xác

định

Ta có: A = 1

1

a a

+

− = 1 +

2 1

a

Để A nguyên thì 2

1

a− nguyên, suy ra a−1 là ước của 2

1 1

0

1 1

4

1 2

a

a a

a

a

 − = −

− =

− =

 − = −

(TMĐK)

Vậy a = 0; 4; 9 thì A có giá trị nguyên

e) Tìm a để A < 1 (Dạng bài toán phụ thứ tư).

Phương pháp: Chuyển vế và thu gọn đưa về dạng M

N < 0 (hoặc

M

N > 0) trong đó dựa vào điều kiện

ban đầu ta đã biết được M hoặc N dương hay âm, từ đó dễ dàng tìm được điều kiện của biến

1

1

a

a

+

− < 1 ⇔

1 1

a a

+

− - 1 < 0 ⇔

1

a

+ − +

− < 0 ⇔

2 1

a− < 0 ⇔ a−1 < 0 ⇔a <1 Kết hợp

điều kiện ban đầu, suy ra 0 ≤ a < 1

a) Tìm điều kiện xác định, Rút gọn A

b) Tìm giá trị nhỏ nhất của A

Bài giải: a) ĐKXĐ x > 0; x≠1 Rút gọn

1

1 :

) ) 1 (

2 1

( 1

1 : )

2 1

(

+

=

+

=

x x

x x

x x

x x x

x

A

2

1

b)Tìm giá trị nhỏ nhất của A (Dạng bài toán phụ thứ năm).

Phương pháp: Dựa vào điều kiện ban đầu và các bất đẳng thức.

Trang 8

CHUYÊN ĐỀ CĂN THỨC BẶC HAI - ÔN THI TS 10

Ta có A= x 2 2

min

2

x

Vậy Amin = 2 2 ⇔ = x 2

a) Tìm ĐKXĐ, và rút gọn A

b)Tìm giá trị của x để A A >

Bài giải: a) ĐKXĐ x > 0; x ≠ 1

( x 12 x)( x 1x 1) x A x 12

+

⇒ =

x 1

( )

2

x 1

x 3 0

x 1 0

⇔ 

− >

 (vì x > 1)⇔ > x 9 Vậy x > 9 thì A A > .

*)Ví dụ 4: Cho biểu thức x 2 x 1

A

a) Tìm ĐKXĐ, rút gọn biểu thức A

b) Với giá trị nào của x thì A > A

Bài giải: a) ĐKXĐ x > 0; x ≠ 1

A

x

Trang 9

CHUYÊN ĐỀ CĂN THỨC BẶC HAI - ÔN THI TS 10

⇔ < ⇔ < Kết hợp với điều kiện xác định 0 < x <1 thì A > A

*)Ví dụ 5:

Cho biểu thức: 1 1

a) Tìm ĐKXĐ và rút gọn P

b) Tìm x để P ( )2

5 2 6 + x 1 − = − x 2005 + 2 + 3.

Bài giải:

a) ĐKXĐ: x > 0; x ≠ 1:

1 P

x 1

⇔ =

P 5 2 6 + x 1 − = − x 2005 + 2 + 3

2

1

x 1

Vậy x = 2005 thì P ( )2

5 2 6 + x 1 − = − x 2005 + 2 + 3

2.3/ BÀI TẬP TƯƠNG TỰ:

a) Tìm điều kiện xác định, rút gọn biểu thức A

b) Với giá trị nào của x thì A > 1

3

c) Tìm x để A đạt giá trị lớn nhất

a) Nêu điều kiện xác định và rút gọn biểu thức P

b) Tìm các giá trị của x để P = 5

4

c) Tìm giá trị nhỏ nhất của biểu thức: M x 12 1

P

x 1

+

=

Trang 10

CHUYÊN ĐỀ CĂN THỨC BẶC HAI - ÔN THI TS 10

x 9

a) Tìm ĐKXĐ, rút gọn biểu thức

b) Tìm x để D < -1

2

c) Tìm giá trị nhỏ nhất của D

a) Tìm ĐKXĐ, rút gọn P

b) Tìm a ∈ Z để P nhận giá trị nguyên

Bài 5 Cho biểu thức B = 2 ( x 3 1 1 ) ( − 2 x 3 1 1 )

a) Tìm x để B có nghĩa và rút gọn B

b) Tìm x nguyên để B nhận giá trị nguyên

P

a) Tìm ĐKXĐ, rút gọn P

b) Tìm giá trị nhỏ nhất của P

c) Tìm x để biểu thức 2 x

Q

P

= nhận giá trị nguyên

Bài 7 Cho biểu thức:

+

a) Tìm ĐKXĐ và rút gọn P b) Tìm x để P > 0

a) Tìm ĐKXĐ, rút gọp P

b) Tìm giá trị của a để P > 0

Bài 9 (Đề thi tuyễn sinh vào lớp 10 - Năm học 2011 - 2012)

A

x 25

− + , với x ≥ 0 và x ≠ 25.

1) Rút gọn biểu thức A

2) Tìm giá trị của A khi x = 9

Trang 11

CHUYÊN ĐỀ CĂN THỨC BẶC HAI - ÔN THI TS 10

3) Tìm x để A < 1

3.

P

x 1

a) Tìm ĐKXĐ, rút gọn P

b) Tìm x để P <1

2.

a) Tìm ĐKXĐ và rút gọn A

b) Tìm tất cả các giá trị của x sao cho A < 0

   với a > 0 và a≠1.

a) Rút gọn biểu thức P

b) Với những giá trị nào của a thì P > 1

2.

Bài

13 Cho biểu thức : A = 2

1

− − với ( x > 0 và x ≠ 1)

1) Rút gọn biểu thức A

2) Tính giá trị của biểu thức khi x= +3 2 2

Bài

14 Cho biểu thức P =

x x

x x

x



+

1 1

a) Rút gọn P

b) Tính GT của P khi x= 4

c) Tìm GT của x để P =

3 13

(Đề thi Hà Nội năm 2008-2009)

Bài

15. Cho biểu thức : A = 1 2

+ − + +

1) Tìm ĐKXĐ và rút gọn biểu thức A

2) Với giá trị nào của x thì A < -1

Bài

16 Cho biểu thức : A = (1 )(1 )

+ − (Với x≥0;x≠1)

a) Rút gọn A

Trang 12

CHUYÊN ĐỀ CĂN THỨC BẶC HAI - ÔN THI TS 10

b) Tìm x để A = - 1

Bài

17 Cho biểu thức : B =

x

x x

x− −2 +2+1−

1 2

2 1

a) Tìm ĐKXĐ và rút gọn biểu thức B

b) Tính giá trị của B với x = 3

c) Tính giá trị của x để

2

1

=

A

Bài

18 Cho biểu thức : P =

x

x x

x x

x

+ + +

+

+

4

5 2 2

2 2 1

a) Tìm TXĐ rồi rút gọn P

b) Tìm x để P = 2

Bài

1

2 2

1 (

: )

1 1

1

+

+

a a

a a

a

a) Tìm TXĐ rồi rút gọn Q

b) Tìm a để Q dương

c) Tính giá trị của biểu thức khi a = 9 - 4 5

Bài

20 Cho biểu thức : M =





+

− +





1 1

2

1

a a a

a a a a

a) Tìm TXĐ rồi rút gọn M

b) Tìm giá trị của a để M = - 4.

Ngày đăng: 06/05/2014, 08:00

TỪ KHÓA LIÊN QUAN

w