1. Trang chủ
  2. » Khoa Học Tự Nhiên

đường thẳng và đường tròn cơ bản

10 436 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 256,25 KB

Nội dung

Toán học được sử dụng trên khắp thế giới như một công cụ thiết yếu trong nhiều lĩnh vực, bao gồm khoa học, kỹ thuật, y học, và tài chính. Toán học ứng dụng, một nhánh toán học liên quan đến việc ứng dụng kiến thức toán học vào những lĩnh vực khác, thúc đẩy và sử dụng những phát minh toán học mới, từ đó đã dẫn đến việc phát triển nên những ngành toán hoàn toàn mới, chẳng hạn như thống kê và lý thuyết trò chơi. Các nhà toán học cũng dành thời gian cho toán học thuần túy, hay toán học vị toán học. Không có biên giới rõ ràng giữa toán học thuần túy và toán học ứng dụng, và những ứng dụng thực tiễn thường được khám phá từ những gì ban đầu được xem là toán học thuần túy

1 PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG ÔN THI ĐẠI HỌC NĂM 2009 I. Đường thẳng 1. Phương trình đường thẳng a) Các định nghĩa • Vectơ () ;nAB G khác vectơ 0 G giá vuông góc với đường thẳng ( ) d được gọi là vectơ pháp tuyến của đường thẳng ( ) d • Vectơ () ;uab G khác vectơ 0 G giá song song hoặc trùng với ( ) d được gọi là vectơ chỉ phương của đường thẳng () d Nếu 0a ≠ thì b k a = được gọi là hệ số góc của đường thẳng ( ) d • Chú ý: - Các vectơ pháp tuyến (vectơ chỉ phương) của một đường thẳng thì cùng phương. Nếu () ; nAB G là vectơ pháp tuyến của ( ) d thì ( ) .; k n kA kB = G cũng là vectơ pháp tuyến của ( ) d - Vectơ pháp tuyến vectơ chỉ phương của một đường thẳng thì vuông góc nhau. Nếu () ; nAB G là vectơ pháp tuyến thì ( ) ; uB A − G là vectơ chỉ phương. b) Các dạng phương trình • Phương trình tổng quát của đường thẳng ( ) d đi qua điểm ( ) 00 ; M xy vectơ pháp tuyến () ; nAB G là: () ( ) ( ) () 00 00 :0 0 dAxxByy Ax By C C Ax By −+ −= ⇔++= =−− Nhận xét: Phương trình đường thẳng () 1 d song song với ( ) d dạng: ( ) 1 :0dAxByC ′ ++= Phương trình đường thẳng () 2 d vuông góc với ( ) d dạng ( ) 2 :0dBxAyC ′′ −+= Phương trình đường thẳng hệ số góc k đi qua điểm ( ) 00 ; A xy là: () 00 ykxx y =−+ Phương trình đường thẳng đi qua ( ) ( ) ;0 , 0; Aa B b là: () :1 xy AB ab + = (phương trình đoạn chắn) • Phương trình tham số của đường thẳng ( ) d đi qua ( ) 00 ; Nx y vectơ chỉ phương ( ) ;uab G là: () 0 0 : x xat d yybt =+ ⎧ ⎨ =+ ⎩ ( t là tham số) MATHVN.COM - www.mathvn.com 2 • Phương trình chính tắc của đường thẳng ( ) d đi qua ( ) 00 ;Nx y vectơ chỉ phương ( ) ;uab G () ,0ab≠ là: 00 x xyy ab −− = c) Vị trí tương đối giữa hai đường thẳng Cho hai đường thẳng () 11 1 1 :0dAxByC++= ( ) 22 2 2 :0dAxByC+ += . Khi đó số giao điểm của () 1 d () 2 d là số nghiệm của hệ phương trình: () 11 1 22 2 0 : 0 Ax By C I Ax By C + += ⎧ ⎨ + += ⎩ Trong trường hợp () 1 d () 2 d cắt nhau thì nghiệm của ( ) I chính là tọa độ của giao điểm. 2. Khoảng cách góc a) Khoảng cách • Cho đường thẳng () :0Ax By CΔ++= điểm ( ) 00 ; A xy . Khoảng cách từ điểm A đến đường thẳng ( ) d là: () 00 / 22 A Ax By C d AB Δ + + = + • Cho hai đường thẳng () 11 1 :0Ax By CΔ++= ( ) 22 2 2 :0Ax By CΔ ++= cắt nhau tại A . Khi đó phương trình hai đường phân giác của góc A là: () 11 12 2 2 1 22 22 11 22 :0 Ax By C Ax B y C d AB AB ++ ++ += ++ () 11 12 2 2 2 22 22 11 22 :0 Ax By C Ax B y C d AB AB + +++ − = ++ b) Góc Hai đường thẳng () 1 d () 2 d cắt nhau tại A tạo ra 4 góc, góc nhỏ nhất trong 4 góc đó được gọi là góc giữa hai đường thẳng ( ) 1 d ( ) 2 d . Nếu 12 //dd thì góc giữa hai được thẳng là 0 o . Gọi α là góc giữa () 1 d () 2 d , β là góc giữa hai vectơ chỉ phương () 111 ;uab JG ( ) 222 ;uab J JG . Khi đó: Nếu 090 oo ≤β≤ thì α=β Nếu 90 180 oo <β≤ thì 180 o α= −β Trong đó β được tính như sau: 12 12 12 22 22 12 11 22 . cos . . uu aa bb uu abab + β= = + + JGJJG JG JJG Khi đó 12 12 22 22 11 22 cos cos . aa bb abab + α= β= ++ Các kết quả trên vẫn đúng nếu thay vectơ chỉ phương bằng vectơ pháp tuyến. Trường hợp đặc biệt: Phương trình đường thẳng đi qua điểm ( ) 00 ; A xy hợp với Ox một góc α hệ số góc là tank =α phương trình là: ( ) 00 ykxx y= −+ 3. Bài tập về đường thẳng MATHVN.COM - www.mathvn.com 3 a) Bài tập bản Bài 1. (Phương trình các đường thẳng bản trong tam giác). Cho tam giác ABC A(1;2), B(-3; 4) C(2;0). a) Viết phương trình đường trung tuyến AM. b) Viết phương trình đường cao BK c) Viết phương trình đường trung trực của AB. Bài 2. (Tìm tọa độ các điểm đặc biệt trong tam giác) Cho tam giác ABC A(0;1), B(-2; 3) C(2;0) a) Tìm tọa độ trực tâm H của tam giác ABC. b) Tìm tọa độ tâm I của đường tròn ngoại tiếp của tam giác ABC. c) Viết phươ ng trình đường thẳng qua IH chứng minh rằng IH đi qua trọng tâm G của tam giác ABC. Bài 3. (Tìm điểm đối xứng của một điểm qua một đường thẳng). Cho 2 điểm A(1;2) B(-3; 3) đường thẳng ( ) :0dxy − = a) Tìm tọa độ hình chiếu của A trên ( ) d b) Tìm tọa độ điểm D đối xứng với A qua d. c) Tìm giao điểm của () B D () d Bài 4. (Tìm điểm trên đường thẳng cách một điểm khác một khoảng cho trước) Cho đường thẳng 22 : 12 x t y t =− − ⎧ Δ ⎨ =+ ⎩ điểm M(3;1). a) Tìm trên Δ điểm A sao cho 13AM = b) Tìm trên Δ điểm B sao cho MB là ngắn nhất. Bài 5. (Viết phương trình đường thẳng qua một điểm cách một điểm một khoảng cho trước) Cho điểm () 1;1A điểm () 2; 2B − . Viết phương trình đường thẳng ( ) d qua A cách B một khoảng bằng 5 . Bài 6. (Viết phương trình đường thẳng hợp với một đường thẳng cho trước một góc) Cho đường thẳng () 10xy Δ+−= . Viết phương trình đường thẳng ( ) d hợp với () Δ một góc a) 0 90 b) 0 45 c) 0 60 d) 0 30 b) Bài tập nâng cao Bài 1. (B – 2004) Trong mặt phẳng tọa độ Oxy cho hai điểm ( ) 1; 1A () 4; 3B − . Tìm điểm C thuộc đường thẳng 210xy−−= sao cho khoảng cách từ C đến đường thẳng AB bằng 6. Bài 2. (A – 2006) Trong mặt phẳng tọa độ, cho các đường thẳng: () () ( ) 123 :30 :40 :20dxy dxy dxy ++= −−= − = MATHVN.COM - www.mathvn.com 4 Tìm tọa độ điểm M trên () 3 d sao cho khoảng cách từ M đến đường thẳng () 1 d bằng hai lần khoảng cách từ M đến ( ) 2 d Bài 3. (D – 2004) Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC các đỉnh ()()() 1; 0 ; 4; 0 ; 0;ABCm − với 0m ≠ . Tìm tọa độ trọng tâm G của tam giác ABC theo m. Xác định m để tam giác GAB vuông tại G. Bài 4. Trong mặt phẳng tọa độ Đềcac vuông góc Oxy cho hình chữ nhật ABCD tâm 1 ;0 2 I ⎛⎞ ⎜⎟ ⎝⎠ , phương trình đường thẳng AB là 220xy− += AB = 2AD. Tìm tọa độ các đỉnh A, B, C, D biết rằng đỉnh A hoành độ âm. Bài 5. Cho đường thẳng () :240dx y −+= điểm ( ) 2; 0A − . Tìm điểm B trên trục hoành điểm C trên đường thẳng d sao cho tam giác ABC vuông cân tại C. Bài 6 (A – 2002). Trong mặt phẳng với hệ tọa độ Đêcac vuông góc cho tam giác ABC vuông tại A, phương trình đường thẳng BC là 330xy− −= , các đỉnh A B thuộc trục hoành bán kính đường tròn nội tiếp bằng 2. Tìm tọa độ trọng tâm G của tam giác ABC. Bài 7. (B – 2003) Trong mặt phẳng tọa độ Đềcac vuông góc Oxy cho tam giác ABC n ,90 o AB AC BAC == . Biết () 1; 1M − là trung điểm cạnh BC 2 ;0 3 G ⎛⎞ ⎜⎟ ⎝⎠ là trọng tâm tam giác ABC. Tìm tọa độ các đỉnh A, B, C Bài 8 (A – 2004). Trong mặt phẳng với hệ tọa độ Oxy cho hai điểm () 2; 0A () 3; 1B − − . Tìm tọa độ trực tọa độ tâm đường tròn ngoại tiếp của tam giác OAB. Bài 9 ( A – 2005) Trong mặt phẳng với hệ tọa độ Oxy cho hai đường thẳng () ( ) 12 :0 :210dxy d xy −= +−= Tìm tọa độ các đỉnh hình vuông ABCD biết rằng đỉnh A thuộc 1 d , đỉnh C thuộc 2 d các đỉnh B, D thuộc trục hoành. Bài 11 (B – 2008) Trong mặt phẳng với hệ tọa độ Oxy, hãy xác định tọa độ điểm C của tam giác ABC biết rằng hình chiếu vuông góc của điểm C trên đường thẳng AB là ( ) 1; 1H − − . Đường phân giác trong của góc A phương trình 20xy− += đường cao kẻ từ B phương trình 4310xy+−= Bài 10 ( B – 2007) Trong mặt phẳng tọa độ với hệ tọa độ Oxy, cho điểm () 2; 2A các đường thẳng: () () 12 :20 :80dxy dxy +−= +−= MATHVN.COM - www.mathvn.com 5 Tìm tọa độ các điểm B C lần lượt thuộc các đường thẳng ( ) 1 d ( ) 2 d sao cho tam giác ABC vuông cân tại A. Bài 12. Cho hai đường thẳng 1 3 : 31 x y d − = − 2 3 : 2 x t d y t = + ⎧ ⎨ = − ⎩ điểm M(1,2) Tìm trên 1 d điểm A 2 d điểm B sao cho A, B đối xứng nhau qua M. Bài 13. Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC vuông tại C . Khoảng cách từ trọng tâm G đến trục hoành bằng 1 3 tọa độ hai đỉnh ( ) ( ) 2; 0 , 2; 0AB − . Tìm tọa độ đỉnh C . Bài 14 Trong mặt phẳng với hệ tọa độ Oxy cho hai điểm ( ) ( ) 0; 4 , 5; 0AB đường thẳng () :2 2 1 0dxy−+= . Lập phương trình hai đường thẳng lần lượt đi qua , A B nhận đường thẳng () d làm đường phân giác. Bài 15. Trong mặt phẳng với hệ tọa độ Oxy , cho đường thẳng ( ) :220dx y − += điểm () 0; 2A . Tìm trên () d hai điểm , B C sao cho tam giác A BC vuông tại B 2 AB BC = . Bài 16. Trong mặt phẳng với hệ trục tọa độ Oxy cho hai đường thẳng () 1 :3 4 6 0 dxy −−= () 2 :5 12 4 0 dxy ++= cắt nhau tại điểm M . Lập phương trình đường thẳng qua () 1;1 K cắt ()() 12 , dd tai hai điểm , AB sao cho tam giác M AB cân tại M . Bài 17. Cho 3 đường thẳng () ( ) ( ) 12 3 :0,:20,:210 dxy dx y dxy += + = − += . Viết phương trình các cạnh của tam giác A BC ; biết A là giao điểm của ( ) 1 d ( ) 2 d ; () 3 , B Cd ∈ tam giác B AC vuông cân tại A Bài 18 – 20. Các bài cực trị bản. Bài 18. Cho đường thẳng () :10 dxy ++= hai điểm ( ) ( ) 2;3 , 2; 0 AB . Tìm điểm M trên đường thẳng ( ) d sao cho: a) M AMB + nhỏ b) M AMB − lớn nhất Bài 19. Cho đường thẳng () :220 dx y +−= hai điểm ( ) ( ) 2; 0 , 2; 6 AB − . Tìm điểm N trên đường thẳng ( ) d sao cho: a) NA NB + là nhỏ nhất b) NA NB − lớn nhất Bài 20 Bài 3. Cho đường thẳng () :10 dxy + += hai điểm ( )( ) 2;3 , 4;1 AB − . Tìm điểm M trên đường thẳng ( ) d sao cho: a) M AMB + JJJG JJJG nhỏ nhất. b) 22 23 M AMB+ nhỏ nhất. b) Chuyên đề - Xác định các yếu tố của tam giác khi biết một số yếu tố cho trước Dạng 1: Biết tọa độ đỉnh phương trình các đường cùng tính chất. Cho tam giác ABC điểm A(2;2), hai đường thẳng 1 :9 3 4 0dxy − −= , 2 :20dxy +−= . Sử dụng giả thiết này để giải các bài toán sau. MATHVN.COM - www.mathvn.com 6 1. Biết tọa đỉnh phương trình hai đường cao. Cho d 1 , d 2 lần lượt là các đường cao BH CK. a) Viết phương trình cạnh AB, AC b) Viết phương trình cạnh BC, đường cao còn lại. 2. Biết tọa độ đỉnh phương trình hai đường trung tuyến. Cho d 1 , d 2 là các đường trung tuyến BM CN. a) Tìm tọa độ trọng tâm của tam giác ABC, tìm điểm D đối xứng của A qua G. b) Viết phương trình đường thẳng qua D song song với BM c) Viết phương trình đường thẳng qua D song song với CN d) Tìm tọa độ của B, C. 3. Biết tọa độ đỉnh phương trình hai đường phân giác. Cho d 1 , d 2 là các đường phân giác trong của góc B C. a) Tìm tọa độ hình chiếu của A trên d 1 , d 2 b) Tìm tọa độ điểm A’, A’’ đối xứng của A qua d 1 , d 2 . c) Viết phương trình đường thẳng BC. d) Xác định tọa độ điểm B, C. Dạng 2: Biết tọa độ đỉnh phương trình hai đường khác tính chất. Cho tam giác ABC đình A(2;-1), hai đường thẳng 12 :210,: 30 dx y dxy − += + += Sử dụng giả thiết trên để giải các bài toán sau: 1. Biết tọa độ đỉnh A, phương trình đường cao BH phân giác CE. Cho d 1 , d 2 lần lượt là đường cao BH phân giác trong CE. a) Viết phương trình đường thẳng AC b) Xác định tọa độ C là giao điểm của đt CD đt AC. c) Tìm điểm A’ đối xứng của A qua CD d) Viết phương trình đường thẳng BC đi qua A’ C. 2. Biết tọa độ đỉnh A, đường cao BH trung tuyến CM Cho d 1 , d 2 lần lượt là đường cao BH trung tuyến CM. a) Viết phương trình đường thẳng AC. b) Gọi B(x B , y B ) tìm tọa độ M theo tọa độ của B. c) Tìm tọa độ của B. MATHVN.COM - www.mathvn.com 7 II. Đường tròn 1. Phương trình đường tròn a) Phương trình đường tròn Phương trình đường tròn () C tâm ( ) ; I ab bán kính R là: ()( ) ( ) () 22 2 :1Cxa yb R−+−= Phương trình đường tròn dạng: 22 22 0x y ax by c++ + += () 2 với điều kiện 22 0abc+ −> . Khi đó tâm () , I ab −− bán kính 22 R abc =+− b) Cách viết phương trình tiếp tuyến Cho đường tròn ()( ) ( ) 22 2 :Cxa yb R−+−= • Tiếp tuyến tại một điểm () 00 ; Ax y là phương trình đường thẳng qua A vectơ pháp tuyến là: () 00 ; I Axayb=− − JJG nên phương trình: ( )( )( )( ) 0000 0 xaxx ybyy − −+− −= • Tiếp tuyến của đường tròn đi qua điểm ( ) 00 ; Px y nằm ngoài đường trònđường thẳng qua P cách () ; I ab một khoảng bằng bán kính R . (đã biết cách viết) c) Một vài tính chất của đường tròn. Điều kiện tiếp xúc Điều kiện tiếp xúc của đường tròn ()( ) ( ) 22 2 :Cxa yb R− +− = với đường thẳng () :0 Ax By C Δ++= là : / 22 I aA bB C dR R AB Δ ++ = ⇔= + Đặt biệt: + Khi Ox Δ≡ thì bR = + Khi OyΔ≡ thì aR = Điều kiện để đường tròn () 11 ; I R đường tròn ( ) 22 ; I R tiếp xúc ngoài là 12 1 2 I IRR= + Điều kiện để đường tròn () 11 ; I R đường tròn ( ) 22 ; I R tiếp xúc trong là 12 1 2 I IRR =− Tính chất tiếp tuyến, cát tuyến Nếu PA, PB là hai tiếp tuyến của đường tròn tâm I bán kính R (A, B là hai tiếp điểm) thì + PA PB= + I P là đường trung trực của AB Cho AB là dây cung của đường tròn M là trung điểm của AB thì I MAB⊥ 2 2 4 AB IM R=− MATHVN.COM - www.mathvn.com 8 2. Bài tập về đường tròn a) Viết phương trình đường tròn khi biết một số yếu tố. Trong phần này để viết phương trình đường tròn ta cần xác định tọa độ tâm độ dài bán kính của đường tròn. Ta thường gọi ( ) , I ab là tâm, bán kính R . Từ những điều kiện đã cho thiết lập phương trình, hệ phương trình ẩn là ,,abR . Chú ý đến các điều kiện tiếp xúc. Bài 1. a) Viết phương trình đường tròn đi qua hai điểm A(0;1), B(2;-2) tâm nằm trên đường thẳng () :20 dxy −−= b) Viết phương trình đường tròn đi qua A(0;1) B(2;-3) bán kính R = 5. c) Viết phương trình đường tròn đi qua gốc tọa độ, bán kính 5R = tâm nằm trên đường thẳng () :10 dxy +−= Bài 2. a) Viết phương trình đường tròn tiếp xúc với hai đường thẳng ( ) 1 :3410 dxy −+= , () 2 :4 3 7 0 dxy ++= đi qua điểm A(2;3). b) Viết phương trình đường tròn bán kính 5R = , đi qua gốc tọa độ tiếp xúc với đường thẳng () :2 5 0 dxy −+= . c) Viết phương trình đường tròn đi qua A(3;2), B(1;4) tiếp xúc với trục Ox . Bài 3 Trong mặt với hệ tọa độ Đềcac vuông góc Oxy cho đường tròn: ()( ) ( ) 22 :1 24Cx y−+− = đường thẳng ( ) :10 dxy − −= . Viết phương trình đường tròn () C ′ đối xứng với ( ) C qua đường thẳng () d . Tìm tọa độ giao điểm của hai đường tròn. Bài 4 (B – 2005) Trong mặt phẳng với hệ tọa độ Oxy cho hai điểm () 2; 0 A ( ) 6; 4 B . Viết phương trình đường tròn () C tiếp xúc với trục hoành tại điểm A khoảng cách từ tâm của ( ) C đến điểm B bằng 5. Bài 5 (A – 2007) Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC ()( ) 0; 2 , 2; 2 AB − − () 4; 2 C − . Gọi H là chân đường cao kẻ từ B; M, N lần lượt là trung điểm của cạnh AB AC. Viết phương trình đường tròn đi qua các điểm H, M, N. Bài 6. Trong mặt phẳng tọa độ Oxy cho hai đường thẳng () () 12 :230 :4350 dx y d xy −+= +−= Lập phương trình đường tròn tâm I trên ( ) 1 d tiếp xúc với ( ) 2 d bán kính 2 R = Bài 7. Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường tròn: () () 22 22 12 :16 :20 Cxy Cxy x += +−= Lập phương trình đường tròn () C tâm ( ) 2, I a tiếp xúc trong với ( ) 1 C tiếp xúc ngoài với () 2 C MATHVN.COM - www.mathvn.com 9 Bài 8 . Cho đường tròn ()( ) ( ) 22 :1 25Cx y−+− = . a) Viết phương trình tiếp tuyến của đường tròn biết tiếp tuyến đi qua điểm () 2;1 B − b) Viết phương trình đường tròn tâm thuộc trục tung bán kính bằng hai lần bán kính của () C tiếp xúc ngoài với () C Bài 9 Viết phương trình đường tròn tiếp xúc với hai trục tọa độ đi qua điểm () 4; 2 A Bài 10 Viết phương trình đường tròn tâm thuộc trục tung tiếp xúc với hai đường thăng () 1 :240 dx y −+= () 2 :2 4 0 dxy −−= b) Viết phương trình tiếp tuyến, cát tuyến Bài 1. Cho đường tròn phương trình ()() 22 234xy− +− = . a) Viết phương trình tiếp tuyến của đường tròn tại điểm thuộc đường tròn hoành độ x = 1. b) Viết phương trình tiếp tuyến của đường tròn đi qua gốc tọa độ. Tìm phương trình đường thẳng đi qua hai tiếp điểm. c) Viết phương trình tiếp tuyến của đường tròn vuông góc với đường thẳng () :10 dxy + −= . Bài 2. Cho đường tròn ()( ) 22 1325xy−++ = . ( C) a) Viết phương trình đường thẳng đi qua gốc tọa độ cắt đường tròn theo một dây độ dài bằng 8. b) Viết phương trình đường thẳng qua qua điểm A(-4;0) cắt đường tròn tại hai điểm A, B sao cho tam giác IAB diện tích là 25 4 . Bài 3. Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn ()( ) ( ) 22 :1 29Cx y− ++ = đường thẳng () :3 4 1 0 dxy −+= . Tìm điểm P trên đường thẳng ( ) d sao cho thể vẽ được hai tiếp tuyến đến đường tròn là ,PA PB (A, B là hai tiếp điểm) mà tam giác PAB : 1. Tam giác đều 2. Tam giác vuông tại P Bài 4. Trong mặt phẳng tọa Oxy, cho đường tròn ()( ) 2 2 :3 5Cx y− += hai điểm () 5 1; 1 , 2; 2 AM ⎛⎞ − − ⎜⎟ ⎜⎟ ⎝⎠ . a) Tìm trên đường tròn hai điểm B, C sao cho tam giác ABC đều. b) Viết phương trình đường thẳng ( ) Δ qua M sao cho cắt đường tròn tại hai điểm , E F mà n 60 o EAF = Bài 5. Trong mặt phẳng tọa độ Oxy, cho đường tròn ( ) 22 :22100 Cx y y y + −+−= điểm () 1;1M . Lập phương trình đường thẳng qua M cắt ( ) C tại ,AB sao cho 2 M AMB= . MATHVN.COM - www.mathvn.com 10 Bài 6 (D – 2007) Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn ()( ) ( ) 22 :1 29 Cx y−++ = đường thẳng () :3 4 0 dxym −+= . Tìm m để trên ( ) d duy nhất một điểm P mà từ đó vẽ được hai tiếp tuyến PA, PB tới () C (A, B là các tiếp điểm) sao cho tam giác PAB đều. Bài 7 (B – 2006) Trong mặt phẳng tọa độ Oxy, cho đường tròn ( ) 22 :2660 Cx y x y +−−+= điểm () 3;1 M − . Gọi 12 , TT lần lượt là các tiếp điểm của các tiếp tuyến kẻ từ M đến ( ) C . Viết phương trình đường thẳng 12 TT . c) Các bài toán khác. Bài 1 . Cho đường tròn phương trình ()() 22 2 215 xy− +− = đường thẳng () ( ) :43 dykx =++ . a) Chứng minh rằng đường thẳng () d luôn đi qua một điểm cố định b) Tìm k để đường thẳng cắt đường tròn tại hai điểm phân biệt , A B . c) Khi đường thẳng cắt đường tròn tại , A B . Chứng minh trung điểm I của A B thuộc 1 đường cố định, viết phương trình đường cố định đó. Bài 2 Cho đường tròn () C phương trình ()() 22 5425 xy− +− = . ( ) ;0 Pm là một điểm thay đổi trên trục hoành a) Tìm m để từ P kẻ được hai tiếp tuyến đến đường tròn ( ) C b) Với điều kiện của câu a, giả sử hai tiếp tuyến đó là , PA PB (A,B là hai tiếp điểm). Chứng minh rằng A B luôn đi qua một điểm cố định khi P di chuyển trên trục hoành, tìm tọa độ điểm cố định đó. Bài 3. Cho ba điểm ()()( ) 2; 4 , 1; 5 , 6; 4 ABC −− − . a) Viết phương trình đường tròn (C) đi qua ba điểm ,, ABC . Tìm tọa độ tâm I bán kính R của đường tròn vừa tìm được. b) Viết phương trình đường tròn đi qua I O cắt ( C) tại hai điểm D, E sao cho tam giác IDE diện tích lớn nhất. MATHVN.COM - www.mathvn.com . tuyến của đường tròn vuông góc với đường thẳng () :10 dxy + −= . Bài 2. Cho đường tròn ()( ) 22 1325xy−++ = . ( C) a) Viết phương trình đường thẳng đi qua gốc tọa độ và cắt đường tròn theo. thì aR = Điều kiện để đường tròn () 11 ; I R và đường tròn ( ) 22 ; I R tiếp xúc ngoài là 12 1 2 I IRR= + Điều kiện để đường tròn () 11 ; I R và đường tròn ( ) 22 ; I R tiếp xúc. Cho đường tròn có phương trình ()() 22 2 215 xy− +− = và đường thẳng () ( ) :43 dykx =++ . a) Chứng minh rằng đường thẳng () d luôn đi qua một điểm cố định b) Tìm k để đường thẳng cắt đường

Ngày đăng: 04/05/2014, 19:54

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w