Chuyên đề hằng đẳng thức đáng nhớ và ứng dụng VnDoc A Một số kiến thức cần nhớ 1 Nhắc lại những hằng đẳng thức đáng nhớ Bình phương của một tổng ( ) ( ) 2 22 2A B A 2AB B A B 4AB+ = + + = − + Bình phư[.]
HẰNG ĐẲNG THỨC ĐÁNG NHỚ VÀ ỨNG DỤNG A Một số kiến thức cần nhớ Nhắc lại đẳng thức đáng nhớ Bình phương tổng: ( A + B ) = A2 + 2AB + B2 = ( A − B ) + 4AB 2 Bình phương hiệu: ( A − B ) = ( B − A ) = A2 − 2AB + B2 = ( A + B ) − 4AB 2 Hiệu hai bình phương: A − B2 = ( A − B )( A + B ) Lập phương tổng: ( A + B ) = A3 + 3A2 B + 3AB2 + B3 = A3 + B3 + 3AB ( A + B ) Lập phương hiệu: ( A − B ) = A3 − 3A2 B + 3AB2 − B3 = A3 − B3 − 3AB ( A − B ) ( ) ( ) Tổng hai lập phương: A + B3 = ( A + B ) A − AB + B2 = ( A + B ) − 3AB ( A − B ) Hiệu hai lập phương: A − B3 = ( A − B ) A + AB + B2 = ( A − B ) + 3AB ( A − B ) Một số đẳng thức tổng quát ( a n – bn = ( a − b ) a n −1 + a n −2 b ++ abn −2 + bn −1 ) ( a 2k – b2k = ( a – b ) a 2k−1 + a 2k−1b ++ a 2k−3 b2 + b2k−1 ( a 2k+1 + b2k+1 = ( a + b ) a 2k – a 2k −1 b + a 2k −2 b2 −+ b2k (a + b + c ) = a + b2 + c + 2ab + 2bc + 2ca Mở rộng: Với trường hợp số mũ lớn ) ) Ta sử dụng tam giác Patxcan Đỉnh Dòng ( n = 1) Dòng ( n = ) Dòng ( n = ) Dòng ( n = ) Dòng ( n = ) Dòng ( n = ) 1 10 15 10 20 15 Trong tam giác hai cạnh bên gồm số dòng k + thành lập từ dòng k ( k 1) Với n = ta có ( a + b ) = a + 4a b + 6a b2 + 4ab3 + b4 Với n = ta có ( a + b ) = a + 5a b + 10a b2 + 10a b3 + 5ab4 + b5 Với n = ta có ( a + b ) = a + 6a b + 15a b2 + 20a b3 + 15a b4 + 6ab5 + b6 B Một số ví dụ minh họa Với hẳng đẳng thức đáng nhớ hẳng đẳng thức mở rộng ta có thẻ áp dụng giải số dạng tập toán sau + Áp dụng trực tiếp đẳng thức để thực tính phép tính, tính giá trị biểu thức số + Áp dụng đẳng thức để thu gọn biểu thức chứng minh đẳng thức + Áp dụng đẳng thức để giải tốn tìm giá trị biến Xác định hệ số đa thức + Bài tốn tính giá trị biểu thức với biến có điều kiện + Chứng minh bất đẳng thức toán tìm giá trị lớn nhất, giá trị nhỏ biểu thức đại số + Áp dụng đẳng thức để giải mọt số toán số học tổ hợp Bài Thực phép tính ( a) – xy ( ) – ( + xy ) 2 )( c) a – b2 a + b2 b) 9x – ( 3x – ) ( ) )( d) a + 2a + a + 2a − e) ( x – y + )( x + y – ) f) ( y + 2z – )( y − 2z − ) g) ( 2y – ) h) ( – y ) ( i) ( 2y – ) 4y + 10y + 25 k) ( x – ) + ( – x ) 3 ( ) j) ( 3y + ) 9y – 12y + 16 l) ( x + y ) – ( x – y ) 3 ) ) • Định hướng tư Sử dụng đẳng thức để khai triển hạng từ thu gọn đa thức Lời giải ( a) – xy ) – ( + xy ) 2 = – 6xy + x y – – 4xy – x y = – 10xy b) 9x2 – ( 3x – ) = ( 3x – 3x + )( 3x + 3x – ) = ( 6x – ) = 24x – 16 ( )( ) c) a – b2 a + b2 = a – b4 ( )( ) ( d) a + 2a + a + 2a − = a + 2a ) – = a + 4a + 4a – e) ( x – y + )( x + y – ) = x – ( y – ) = x – y + 12y – 36 f) ( y + 2z – )( y − 2z − ) = ( y – ) – 4z = y – 6y – 4z + g) ( 2y – ) = 8y – 36y + 54y – 27 h) ( – y ) = – 12y + 6y – y 3 i) (2y – 5)(4y2 + 10y + 25) = 8y3 – 125 ( ) j) ( 3y + ) 9y – 12y + 16 = 27y + 64 3 2 k) ( x – ) + ( – x ) = ( x – + – x ) ( x – ) – ( x – )( – x ) + ( – x ) ( ) = − x2 – 6x + – 2x + x2 + – 3x + – 4x + x = −3x + 15x + 19 l) ( x + y ) – ( x – y ) = x3 + 3x2 y + 3xy + y – x + 3x y – 3xy + y = 6x y + 2y 3 Bài Rút gọn biểu thức sau ( )( )( )( a) x2 – 2x + x2 – x2 + 2x + x2 + ) b) ( x + 1) – ( x – 1) + 3x – 3x ( x + 1)( x – 1) 2 ( ) c) ( 2x + 1) + 4x – + ( 2x – 1) 2 d) ( m + n ) – ( m – n ) + ( m – n )( m + n ) 2 e) ( 3x + 1) – ( 3x + 1)( 3x + ) + ( 3x + ) 2 f) ( a – b + c ) – ( a – b + c )( c – b ) + ( b – c ) ( ) ( ) g) ( 2x – ) 4x2 + 10x + 25 ( 2x + ) 4x – 10x + 25 − 64x h) ( a + b ) + ( a – b ) – 2a 3 ( i) ( x + y + z ) + ( x – y ) + ( x – z ) + ( y – z ) – x + y + z 2 2 ) Lời giải • Định hướng tư Rút gọn biểu thức cách gọi khác thực phép tính, ta sử dụng đẳng thức để khai triển hạng từ thu gọn biểu thức Lời giải ( )( )( )( ) ( ) ( a) x2 – 2x + x2 – x2 + 2x + x2 + = x2 + – 4x x – ( )( ) ( )( ) ) = x4 + 4x2 + – 4x2 x – = x + x – = x – 16 ( b) ( x + 1) – ( x – 1) + 3x – 3x ( x + 1)( x – 1) = ( x + – x + 1)( x + + x – 1) + 3x – 3x x – 2 = 4x + 3x2 – 3x3 + 3x = − 3x3 + 3x2 + 7x ( ) c) ( 2x + 1) + 4x – + ( 2x – 1) = 4x + 4x + + 8x – + 4x – 4x + = 16x 2 ) d) ( m + n ) – ( m – n ) + ( m – n )( m + n ) 2 = ( m + n – m + n )( m + n + m – n ) + m – n = 4mn + m – n e) ( 3x + 1) – ( 3x + 1)( 3x + ) + ( 3x + ) = ( 3x + – 3x – ) = 16 2 f) ( a – b + c ) – ( a – b + c )( c – b ) + ( b – c ) = ( a – b + c + b – c ) = a 2 ( ) ( ) g) ( 2x – ) 4x2 + 10x + 25 ( 2x + ) 4x – 10x + 25 − 64x ( )( ) = 8x3 – 125 8x3 + 125 = 64x6 − 1252 h) ( a + b ) + ( a – b ) – 2a = a + 3a b + 3ab2 + b3 + a – 3a b + 3ab – b – 2a = 6ab 3 ( i) ( x + y + z ) + ( x – y ) + ( x – z ) + ( y – z ) – x + y + z 2 2 ) = x2 + y + z2 + 2xy + 2yz + 2zx + x2 – 2xy + y + x – 2zx + z + y – 2yz + z2 – 3x2 – 3y – 3z = Bài Tìm x biết ( ) a) ( x – ) – ( x – ) x + 3x + + ( x + 1) = 15 ( ) b) 4x2 − 81 = c) x ( x – )( x + ) – ( x – ) x + 2x + = d) 25x2 – = e) ( x + ) = ( 2x – 1) f) ( x + ) – x + = ( ) 2 ( ) g) x2 – + ( x – 1) – x − ( x − 1) = 2 • Định hướng tư Bài tốn tìm x dạng tập tìm giá trị biến biết giá trị biểu thức Với tập để tìm x trước hết ta cần sử dụng đẳng thức để khai triển hạng từ thu gọn biểu thức tìm giá trị x từ đẳng thức đơn giản cuối Lời giải a) ( x – 3) – ( x – 3) ( x ) + 3x + + ( x + 1) = 15 x3 – 9x2 + 27x – 27 – x3 + 27 + 9x2 + 18x + = 15 45x = x = b) 4x2 − 81 = x2 = 81 x= 2 15 ( ) c) x ( x – )( x + ) – ( x – ) x2 + 2x + = x3 – 25x – x3 + = 25x = x = d) 25x2 – = x = e) (x + 2) 2 x = 25 x = x + = 2x − = ( 2x – 1) x = − x + = − 2x + 2 23 f) ( x + ) – x + = x + 4x + – x + = x + 3x + = x + + =0 2 2 2 23 23 nên khơng có giá trị thỏa mãn x + + = hay khơng có Do x + + 2 2 4 giá trị thỏa mãn ( x + ) – x + = g) (x ) ( ) ( – + ( x – 1) – x − ( x − 1) = x – – 2x + 2 ) =0 x2 ( x − ) x = 0; x = 2 Bài Tính giá trị biểu thức sau 1352 + 130.135 + 652 b) B = 1352 − 652 a) A = 123 ( 123 + 154 ) + 77 c) D = 12 – 22 + 32 – 42 +– 20182 + 20192 ( )( )( )( )( ) d) D = ( + 1) 22 + 24 + 28 + 216 + 32 + – 64 • Định hướng tư Quan sát biểu thức ta thấy có bóng dáng đẳngthức đáng nhớ Do ta sử sử dụng hẳng đẳng thức đáng nhớ để biến đổi biểu thức Lời giải a) Ta có A = 123 (123 + 154 ) + 77 = 1232 + 2.123.77 + 77 = (123 + 77 ) = 200 = 40000 b) Ta có 1352 + 130.135 + 65 135 + 2.135.65 + 65 B= = 1352 − 652 135 − 65 (135 + 65 ) 135 + 65 200 20 = = = = (135 − 65 )(135 + 65 ) 136 − 65 70 c) Ta có A = 12 – 2 + 32 – + – 2018 + 2019 ( ) ( ) ( = + 32 – 2 + 52 – ++ 2019 – 2018 ) = + ( + )( – ) + ( + )( – ) ++ ( 2019 + 2018 )( 2019 – 2018 ) = + + + + ++ 2019 + 2019 = (1 + 2019 ) 2019 = 1010.2019 b) Ta có ( )( )( )( )( ) = ( −1)( + 1)( + 1)( + 1)( + 1)( + 1) – = ( – 1)( + 1)( + 1)( + 1)( + 1) – = = ( − 1)( + 1) – = – – = −1 B = ( + 1) 2 + + + 216 + 32 + – 64 2 4 16 32 32 64 16 32 32 64 64 64 64 Bài a) Cho x − y = Tính giá trị biểu thức: A = x ( x + ) + y ( y – ) – 2xy B = x – 3xy ( x – y ) – y – x + 2xy – y b) Cho x + 2y = Tính giá trị biểu thức: C = x2 + 4y2 – 2x + 10 + 4xy – 4y • Định hướng tư Quan sát giả thiết tốn ta thấy có hai hướng + Hướng Biến đổi biểu thức làm xuất hạng tự có dạng x − y x + 2y + Hướng Thay x = y + x = − 2y tương ứng vào biểu thức thu gọn biểu thức Cả hai hướng ta cần sử dụng biến đổi để đưa đẳng thức đáng nhớ khai triển đẳng thức đáng Lời giải a) A = x ( x + ) + y ( y – ) – 2xy = x2 + 2x + y – 2y – 2xy = ( x – y ) + ( x – y ) Thay x − y = vào biểu thức A ta A = + 2.7 = 63 B = x3 – 3xy ( x – y ) – y3 – x2 + 2xy – y = ( x – y ) – ( x – y ) Thay x − y = vào biểu thức ta B = – = 294 b) C = x2 + 4y – 2x + 10 + 4xy – 4y = ( x + 2y ) – ( x + 2y ) (3) Thay x + 2y = vào biểu thức C ta C = 52 – 2.5 = 15 Bài Chứng minh đẳng thức: ( )( ) a) a + b c + d = ( ac + bd ) + ( ad – bc ) 2 b) ( a + b + c ) + a + b2 + c = ( a + b ) + ( b + c ) + ( c + a ) 2 2 • Định hướng tư Quan sát đẳng thức cần chứng minh ta thấy có hai hướng + Hướng Khai triển vế trái đẳng thức sử dụng đẳng thức để biến đổi biểu thức vế phải + Hướng Sử dụng đẳng thức biến đổi đồng thời hai vế so sánh kết Lời giải ( )( ) a) a + b c + d = ( ac + bd ) + ( ad – bc ) 2 Lời giải ( )( ) VT = a + b c + d = a c + a 2d + b c + b 2d ( ) ( ) = a c + b2d + 2abcd + a 2d + b c – 2abcd = ( ac + bd ) + ( ad – bc ) = VP ( )( 2 ) Lời giải Ta có a + b2 c + d2 = a c + a 2d2 + b2 c + b2d2 Lại có ( ac + bd ) + ( ad – bc ) = (a c 2 2 ) ( + b2d2 + 2abcd + a 2d2 + b2c – 2abcd = a c +a d + b c + b d 2 ( )( ) 2 2 Do ta a + b c + d = ( ac + bd ) + ( ad – bc ) b) ( a + b + c ) + a + b2 + c = ( a + b ) + ( b + c ) + ( c + a ) 2 ) 2 Ta có (a + b + c ) ( + a + b2 + c = a + b2 + c + 2ab + 2bc + 2ac + a + b2 + c ) ( ) ( ) = a + b2 + 2ab + b2 + c + 2bc + a + c + 2ac = ( a + b ) + ( b + c ) + ( c + a ) 2 Bài Chứng minh ( a + b + c ) = ( ab + bc + ca ) a = b = c • Định hướng tư Quan sát giả thiết ta thấy có đẳng thức đáng nhớ Do ta sử sử dụng hẳng đẳng thức đáng nhớ để biến đổi giả thiết tốn Ngồi để ý tổng bình phương bình phương nên ta biến đổi giả thiết toán tổng bình phương Lời giải Biến đổi tương đương đẳng thức cho ta (a + b + c ) = ( ab + bc + ca ) a + 2ab + b + 2bc + 2ac + c = 3ab + 3bc + 3ac a + b2 + c − ab − bc – ac = 2a + 2b2 + 2c − 2ab − 2bc – 2ac = (a – b) + ( b – c ) + (c – a ) = a − b = b − c = c − a = a = b = c 2 Bài Cho a, b, c, d số thực khác thỏa mãn a + b = c + d a2 + b2 = c2 + d2 Chứng minh rằng: a2018 + b2018 = c2018 + d2018 • Định hướng tư Quan sát giả thiết toán đẳng thức cần chứng minh ta dự đoán a = c; b = d a = d; b = c Như ta chứng minh a = c a = d , điều đồng nghĩa với ( a − c )( a − d ) = Lời giải Từ a + b = c + d ta ( a + b ) = ( c + d ) a + b2 + 2ab = c + d2 + 2cd 2 Kết hợp với a2 + b2 = c2 + d2 ta ab = cd Cũng từ a + b = c + d ta b = c + d − a , thay vào ab = cd ta a ( c + d − a ) = cd ac + ad − a = cd a − ac − ad + cd = ( a − c )( a − d ) = + Nếu a − c = ta a = c , suy b = d Khi ta a2018 + b2018 = c2018 + d2018 + Nếu a − d = ta a = d , suy b = c Khi ta a2018 + b2018 = c2018 + d2018 Vậy tốn chứng minh hồn tất MỘT SỐ BÀI TẬP TỰ LUYỆN Bài Tính giá trị biểu thức sau ( )( ) a) A = 324 − 27 + 96 − b) B = 852 + 752 + 652 + 552 − 452 − 352 − 252 − 152 Bài So sánh số sau a) A = 2018.2020 + 2019.2021 B = 20192 + 20202 − ( )( )( )( )( ) b) A = 10 + + 98 + 916 + 32 + B = 964 − x2 − y2 x−y c) A = B = với x y x+y x + xy + y (x + y) d) A = B = x2 − y2 x − xy + y với x y x−y Bài Cho a + b + c + d = Chứng minh a + b3 + c + d = ( ab − cd )( c + d ) Bài Cho a + b + c = 4m Chứng minh rằng: 2 a + b−c b+c −a c+a − b + + = a + b2 + c − 4m 2 Bài Cho x, y số thực thỏa mãn x4 + x2 y2 + y4 = x8 + x4 y4 + y8 = Tính giá trị biểu thức A = x12 + x2 y2 + y12 Bài Cho x, y số thực tỏa mãn x + y = Tính giá trị biểu thức sau: a) A = 3x2 − 2x + 3y2 − 2y + 6xy − 100 b) B = x + y − 2x − 2y + 3xy ( x + y ) − 4xy + ( x + y ) + 10 ( ) c) C = x3 + y + 3xy x2 + y + 6x y ( x + y ) Bài Cho a2 + b2 + c2 = m Tính giá trị biểu thức sau theo m A = ( 2a + 2b − c ) + ( 2b + 2c − a ) + ( 2c + 2a − b ) 2 Bài Đơn giản biểu thức sau: A = ( x + y + z ) – ( x + y – z ) – ( y + z – x ) – ( z + x – y ) ( 3 ) Bài Cho x + y = a; xy = b a 4b Tính giá trị biểu thức sau : b) x3 + y3 a) x2 + y2 d) x5 + y5 c) x4 + y4 Bài 10 Chứng minh đẳng thức : ( a) a + b3 + c – 3abc = ( a + b + c ) a + b2 + c – ab – bc – ca b) ( a + b + c ) – a – b3 – c = ( a + b )( b + c )( c + a ) ) ... ++ 2 019 + 2 019 = (1 + 2 019 ) 2 019 = 10 10.2 019 b) Ta có ( )( )( )( )( ) = ( ? ?1) ( + 1) ( + 1) ( + 1) ( + 1) ( + 1) – = ( – 1) ( + 1) ( + 1) ( + 1) ( + 1) – = = ( − 1) ( + 1) – = – – = ? ?1 B = ( + 1) 2 +... A = 12 3 (12 3 + 15 4 ) + 77 = 12 32 + 2 .12 3.77 + 77 = (12 3 + 77 ) = 200 = 40000 b) Ta có 13 52 + 13 0 .13 5 + 65 13 5 + 2 .13 5.65 + 65 B= = 13 52 − 652 13 5 − 65 (13 5 + 65 ) 13 5 + 65 200 20 = = = = (13 5... + Nếu a − c = ta a = c , suy b = d Khi ta a20 18 + b20 18 = c20 18 + d20 18 + Nếu a − d = ta a = d , suy b = c Khi ta a20 18 + b20 18 = c20 18 + d20 18 Vậy tốn chứng minh hồn tất MỘT SỐ BÀI TẬP TỰ