UBND HUYỆN KINH MƠN PHỊNG GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI OLYMPIC NĂM HỌC 2017-2018 MƠN: TỐN- LỚP Thời gian làm bài:150 phút ( Đề gồm có: câu, 01 trang) Câu 1: (2,0 điểm) 1) Phân tích đa thức sau thành nhân tử: x2(x4 - 1)(x2 + 2) + 2) Biết 4a2 + b2 = 5ab với 2a > b > Tính giá trị biểu thức: C ab 4a b 2 Câu 2: (2,0 điểm) Giải phương trình sau: 1) x 3x x ; 2) 9x x 8 2x x 2x x Câu 3: (2,0 điểm) 1) Tìm số nguyên x, y thoả mãn: x2 + 2xy + 7(x + y) + 2y2 + 10 = 2) Cho đa thức f(x) = x - 3x + 3x - Với giá trị nguyên x giá trị đa thức f(x) chia hết cho giá trị đa thức x + Câu 4: (3,0 điểm) Cho O trung điểm đoạn AB Trên nửa mặt phẳng có bờ đường thẳng AB vẽ tia Ax, By vng góc với AB Trên tia Ax lấy điểm C (khác A), qua O kẻ đường thẳng vng góc với OC cắt tia By D 1) Chứng minh AB2 = AC.BD; 2) Kẻ OM vng góc CD M Chứng minh AC = CM; 3) Từ M kẻ MH vng góc AB H Chứng minh BC qua trung điểm MH Câu 5: (1,0 điểm) Cho x, y, z số dương thỏa mãn x y z Tìm giá trị nhỏ biểu thức: P = 1 16 x y z Hết UBND HUYỆN KINH MƠN PHỊNG GIÁO DỤC VÀ ĐÀO TẠO Câu HƯỚNG DẪN CHẤM ĐỀ THI OLYMPIC NĂM HỌC 2017-2018 MƠN: TỐN- LỚP ( Hướng dẫn chấm gồm: câu, trang) Đáp án Điểm (1điểm) x2 (x4 - 1)(x2 + 2) + = x2 (x2 - 1)(x2 + 1)(x2 + 2) + = (x4 + x2)(x4 + x2 – 2) + 0,25 0,25 = (x4 + x2)2 – 2(x4 + x2) + 0,25 = (x4 + x2 – 1)2 (2 (1điểm) điểm) 4a2 + b2 = 5ab (a – b)(4a – b) = 0,25 a b a b 4a b 4a b 0,5 Do 2a > b > nên 4a = b loại Với a = b C 0,25 ab a 2 4a b 4a a 0,25 (1điểm) * Với x (*) ta có phương trình: x2 -3x + + x-1 = x x x 1 x ( Thoả mÃn điều kiƯn *) 2 0,25 0,25 * Víi x < (**) ta có phương trình: x2 -3x + + - x = x x x 1 x 3 (2 điểm) + x - = x ( Không thỏa mÃn điều kiện **) + x - = x ( Không thoả mÃn điều kiện **) Vậy nghiệm phương trình (1) là: x = (1điểm) - Xét x = nghiệm - Xét x khác 9x x 8 2x x 2x x 8 3 2x 1 2x 1 x x 0,25 0,25 0,25 Đặt : t , ta có phương trình: x 8 t 1 t 1 2x ĐKXĐ x khác 1;-1 0,25 PT 8t 8t 2t 1 t 0,25 x x2 x 2x 0,25 95 (2 x ) 0 16 => PT vơ nghiệm (1điểm) Ta có: x2 + 2xy + 7(x + y) + 2y2 + 10 = 4x2 + 8xy + 28x + 28y + 8y2 + 40 = (2x + 2y + 7)2 + 4y2 = (*) Ta thấy (2x + 2y + 7)2 nên 4y2 y y 0;1 y 0;1; 1 0,25 y nguyên nên Với y = thay vào (*) ta được: x tìm x 2; 5 Với y = thay vào (*) ta có : (2x + 9)2 = - khơng tìm x ngun Với y = -1 thay vào (*) ta có (2x + 5)2 = - khơng tìm x ngun Vậy (x;y) ngun tìm (-2 ; 0) ; (-5 ; 0) (1điểm) (2 Chia f ( x ) cho x thương x - dư x + điểm) để f ( x ) chia hết cho x x + chia hết cho x => (x + 2)(x - 2) chia hết cho x2 + => x2 - chia hết cho x2 + => x2 + - chia hết cho x2 + => chia hết cho x2 + => x2 + ước mà x => x 3; 6 0,25 0,25 0,25 0,25 0,25 => x 1; 2 0,25 Thử lại ta thấy x = 1; x = -2 thỏa mãn Vậy với x = ; x = -2 f ( x ) chia hết cho x Vẽ hình ghi GT, KL 0,25 y x (3 điểm) D 0,25 I M C A K H O B (1điểm) Chứng minh: ΔOAC ΔDBO (g-g ) 0,25 0,25 OA AC OA.OB AC.BD DB OB AB AB AC.BD AB2 4AC.BD (đpcm) 2 0,25 (1điểm) Theo câu a ta có: ΔOAC ΔDBO (g-g) OC AC OD OB Mà OA OB OC AC OC OD 0,25 ACO +) Chứng minh: ΔOCD ΔACO (c-g-c) OCD +) Chứng minh: ΔOAC=ΔOMC (ch -gn) AC MC (đpcm) (1điểm) Ta có ΔOAC=ΔOMC OA OM; CA CM OC trung trực AM OC AM Mặt khác OA = OM = OB ∆AMB vng M OC // BM (vì vng góc AM) hay OC // BI Chứng minh C trung điểm AI 0,25 OD OA AC OA Do MH // AI theo hệ định lý Ta-lét ta có: MK BK KH IC 0,25 0,25 0,25 BC AC Mà IC = AC MK = HK BC qua trung điểm MH (đpcm) 1 1 1 y x z x z y 21 x y z 16x y z 16x y z 16 x y 16 x z y z 16 y x Theo BĐT Cô Si ta có: dấu “=” y = 2x; 16 x y z x z y (1điểm) Tương tự: 16 x z dấu “=” z = 4x; y z dấu “=” z = 2y; 49 P Dấu “=” xảy x = ; y = ; z = 16 7 49 Vậy Min P = với x = ; y = ; z = 16 7 *Chú ý: Học sinh có cách giải khác cho điểm tối đa P= 0,5 0,25 0,25 0,25 0,25 0,25 ...UBND HUYỆN KINH MƠN PHỊNG GIÁO DỤC VÀ ĐÀO TẠO Câu HƯỚNG DẪN CHẤM ĐỀ THI OLYMPIC NĂM HỌC 2017- 20 18 MƠN: TỐN- LỚP ( Hướng dẫn chấm gồm: câu, trang) Đáp... - Xét x khác 9x x ? ?8 2x x 2x x ? ?8 3 2x 1 2x 1 x x 0,25 0,25 0,25 Đặt : t , ta có phương trình: x ? ?8 t 1 t 1 2x ĐKXĐ x khác 1;-1 0,25 PT 8t 8t 2t 1 ... x ) 0 16 => PT vơ nghiệm (1điểm) Ta có: x2 + 2xy + 7(x + y) + 2y2 + 10 = 4x2 + 8xy + 28x + 28y + 8y2 + 40 = (2x + 2y + 7)2 + 4y2 = (*) Ta thấy (2x + 2y + 7)2 nên 4y2 y y 0;1