1. Trang chủ
  2. » Tất cả

Phát triển khả năng suy luận cho sinh viên trong dạy học toán cao cấp

4 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 142,52 KB

Nội dung

IIIBESBE19 PHAT TRIEN KHA NANG SUY LUAN CHO SINH VIEN TRONG DAY HOC TOAN CAO CAP ThS Nguyfin Thl Dunn, ThS Di Phi Nga Hpc vi^n Cdng ngh$ Buu chinh Viin thdng SUMMARY The paper presents the types of re[.]

Trang 1

IIIBESBE19

PHAT TRIEN KHA NANG SUY LUAN

CHO SINH VIEN TRONG DAY HOC TOAN CAO CAP

ThS Nguyfin Thl Dunn, ThS Di Phi Nga

Hpc vi^n Cdng ngh$ Buu chinh - Viin thdng

SUMMARY The paper presents the types of reasoning (deductive and inductive) and the issues that students need to consider when deducting For example: Understanding the rules of logic, combining both types of deductive, using diatoms, Identifying common mistakes while reasoning The above strategies will help students have good deduction and limit the mistakes as a result, students 'deductive skills can be Improved

Keywords: Reasoning, deductive Inductive, advanced mathematics

Ngdy nfifin bdi: 15/9/2015; Ngdy duyft bdi: 16/9/2015

L Md diu: Suy lugn la thdnh phan quan trgng

trong suy nghT cfla mSi ngucri Qud Uinh suy lufn s6

tgo ra thdng tin mdi tfl nhQng dilu dd biet, nd giflp

Ich cho vifc gidi qi^lt cdc bdi todn, cdc van dk trong

cufc sing Vifc rSn luyfn khd ndng suy lufn la mpt

trong nhfhig bifn phdp dl cd thl phdt uiln tu duy

phdn tfch, tu d\xy hf thing, tu duy sdng tgo, Bdi

vilt nhim giflp sinh viSn hilu rd hem ve cdc dgng suy

lufn, cdc kieu suy lufn sai lim thudng gfp cfla hg khi

gidi bdi tfp Todn cao cip Tfl do, smh viSn cd thl bilt

lya chgn vd vfn dyng suy lufn tit hem

n Khdi nifm vd cdc dgng suy lugn

2.1 Khdi ni^m suy lupn: Suy lufn Id hinh thflc

cfla tu duy, dk rflt ra mft phdn dodn mdi tfl mgt hay

nhilu phdn dodn dd cd Cdc phdn dodn dd cd gpi Id

tiln de Phdn dodn mdi dugc rflt ra gpi la ket lugn cua

siQ* lufn Cdch thflc rflt ra kit lugn tfl tiln dl gpi la

lgp lufn

MSI suy lufn dupc bieu dien duin dgng mpt

mfnh dk kdo theo md tiSn dl Id rapt mfnh dl ho$c

hfi cfla nhieu mfnh de: Pi,P2f;p„=^q (cdc p^ Id

cdc tiln dl, q Idkltlufn, / = 1,2 n )

Cd hai dgng suy lufn co bdn: Suy lufn dien djch

vd sity lufn quy ngp

2.2 Suy lupn diin dich

2.2.1 Khdl nlim: Mpt sl tdi lifu dd dua ra khdl

nifm vl suy lufn diln djch nhu sau:

"Suy lufn dien djch (cdn gpi Id suy dien) Id suy

lufn theo mft qi^ tde thda mdn dilu kifn: Nlu tiln

dl A dflng thi kit lugn B dflng Ki hifu: — " ([5], U

13) ^

"Suy lufn dien djch Id suy lufn vdi each % lufn di tfl tien de phdn dnh hieu biet chung din kit

ludn phdn dnh hilu bilt riSng" ([ 1 ], tr 39) Vi d\i.: Con

ngudi khdng thl sing dugc den 200 tuoi Ong Hodng

Id ngudi, vfy dng iy khdng the sdng dugc den 200 tuoi

2.2.2 Mgt so vdn de cdn chu y trong SIQ> lugn diin djch

Dilu kifn cin vd dfl de suy lufn dat tdi kit lufn dflng id phdi xuit phdt tfl nhQng tien de ehan thyc vd qud Uinh lfp lufn phdi dflng ddn, nghTa Id tuan theo cdc quy tdc Idgic (cdc phdp lien kit Idgic mfnh dl, phdp phfl djnh jugng tfl, lugt d^ng nhit' ) NhQng vin dl ndy sinh vien cin tham khdo Uong cac t^ lifu

vl Idgic todn Chdng hgn, xdt raft vdi quy tdc sau:

1) Mfnh dl p ^ 9 chi sai khi p dflng, q sai

2) Mft cdng thflc rafnh dl dupc gpi la hdi^ dflng nlu nd ludn nhfn gia Uj 1 vdi mpi thl hifn ciia cdc bien mfnh de cd trong cdng thurc

Nlusuylufn Pi,p2,—P„=>q IdmfnhdShdng

dflng thl ta ndi suy lugn do hgp Idgic Ngupc 1^, nSu

P\>p2>—Pn =^ 9 khdng phdi Id mfnh dl hdng dflng

thi suy lufn dd khdng hgp Idgic

3) Vxe D,S(,x) • » (axe A^OO) 3x e D,S(x) o (Vx e A5(x))

4) Luft ding nhit (Trong qud Uinh suy lufn, mgi tu tudng diu phdi ddng nhit vdi chinh nd, nlu khdng tuan thfl qiiy luft ding nhit thl sS din din lgp lufn Iflng cflng, sai lira trong suy nghi)

Trang 2

LiSn hf Uong hgc tip todn cao cip, ta thdy:

1) Mfnh dl "NIU chudi sd ^ u „ hfi ty thi

B=l

lim u^ = 0 " chi sai khi tdn tgi mgt chuoi so J^ "

ndo dd hfi ty nhung lim u„ ^ 0

2) Suy lugn ( ( ^ =>9)^p)^q la hgp Idgic

p

1

1

0

0

Th|t v|y

Q

1

0

1

0

p = > ?

1

0

1

1

xet bang gia tri cllSn li, ta cd:

( P = > ? ) A P

1

0

0

0

((p=>g)Ap)=>5

1

1

1

1

Tu ket lugn ndy, ta thdy neu m^nh de p^g

dflng vd mfnh de p dflng thi suy ra q dflng (Dilu

niy thudng dupc dp dyng mgt cdch hlln nhien trong

cdc suy lufn md khdng cin kilm tra lgi bdng gid trj

chdn If)

Ching hgn: Ta biet ring "Neu hdm so / ( x ) lien

tyc USn [o,b] thi / ( x ) khd tich trSn [a,6]", vd

"hdm so / ( x ) = xlnx liSn tyc tren [l,e]"- Vgy suy

rahamso / ( x ) = xlnx khd tfch tren [\,e]

3) Tfl djnh nghla: "Hdm sd / ( x ) dgt cyc dgi tgi

XQ nlu tin tgi mpt lan cdn C^(X(,) ndo dd cfla XQ

saocho V x e f ^ ( x o ) , / ( x ) < / ( x o ) "

Ap dyng cdng thflc

3xeD.S(x) o (Vx e D,S(^) ^ ta cd:

/ ( x ) khdng dgt cye dgi tgi XQ nlu vdi mpi lan

cfn Ogix^) cfla Xp, VxEqj(xo),/(x)^/(xo).Lgi

dp dyng cdng thflc V x e A 5 ( x ) •» (HX e £>,5(x)),

tasuyra:

/ ( x ) khdng dgt cyc dgi tgi x,, neu vdi mpi

ldn cfn Cigixo) cfla x^,, Hxeqj(xo), / ( x ) > / ( x o )

4) Cdc Ifp lufn sau Id khdng dugc vl khdng

tudn tiieo luft ding nhit:

"Cd iy da dogt gidi hai lin, mft lin tgi SEA

Games va mpt tan t ^ Sin^wre";

"Tgp X = (0,2] cd vd sd phan tfl ^ A' khdng

bj chfn"

Nhgn xet: Ngodi viic dp dgng cdc quy tdc Idgic, ngudl ta cdn ket hgp dp d\tng cdc dgng sa do de qud trinh suy lugn duac rd rdng mgch lgc han Chdng hgn, xet vi dg sau

Vi dy: Tfl cdc tiln de: "Tit cd nh&ng ngudi nudi

ong Id nhd hda hgc", "Cd vdl nhd hda hpc Id nhgc sT', suy ra "vdi ngudi nudi ong la nhgc sT" Suy lufn ndy

cd dflng khdng?

Gldl: Dung so dd, ta thay cd thl xdy ra trudng

hgp sau:

(o: ngudi nudi ong; h: nhd hda hgc; n: nhgc SI) Vfy suy lufn USn khdng dflng

2.3 Suy lupn guy ngp

Suy lugn qi^ ngp Id suy lufn khdng dya theo mpt quy tdc ndo, kit lufn thudng dugc rflt ra trSn co

sd xem xet nhflng tmdng hgp rieng

2.3.1 Suy lugn quy ngp hodn todn

Suy lugn quy ngp hodn toan Id phdp suy lufn nhim rflt ra kSt lugn chung ve tat cd cdc tm&ng hgp

cy the dd dupc xet dSn

Chdng hgn, phucmg phap quy ngp todn hgc Id mft dgng suy lufn qi^ ngp hodn todn

Suy lugn quy ngp khdng hodn toan (cdn ggi Id suy lufn nghe cd If)

Si^ lugn quy ngp khdng hodn todn Id mgt logi

suy lufn quy ngp, Uong dd kit lugn rflt ra dya trfn sy

xet khdng diy dfl cdc tmdng hpp riSng, do vfy kit lugn chi mang tinh chit dy dodn, gid thuylt M^c dfl dgng suy lugn nay cd thl dua din nhihig kit lugn khdng dflng, nhung nd giflp md rfng hilu bilt cfla ta d mft mflc dp ndo dd Hon nOa, nhihig dy dodn, gid thuylt cd thl Id ggi ^ ban diu dl dua din nhihig chflng minh dflng ddn

Cd mft dgng dfe bift Uong suy lufn quy n ^ khdng hodn todn, dya Uen sy tuong ty, gpi Id suy lufn tuong ty

Cildng hgn, vdi cdc vd cflng bd, tfl nhan xft:

Trang 3

ap~a^py khix->Xfj,

>a + fi~af+fif khlx-^XQ

[fi~/Ji khix-*x^

ta nghT den dieu tuoi^ ty

{a~a^ kltlx-*XQ

P~P, khix^XQ

Kit lufn ndy khdng dung trong mpi

tmdng hgp (Chdng hgn, no khdng dflng khi

a = x-x^; a,=x + x^; fi=fit=-x'> Xo=0).Tuy

nhiSn, ta thiy nd dflng trong nhieu trudng hgp khac,

vfy cd thl iQri dyng dilu nify de dua ra gid thiflt vd

tfl dd ed cdch gidi l>di todrt

Vf dy: Xdt sy hfi ty cfla tich phan suy rpng

Se -e

Phdn tich:

e ' - l ~ x khlx-*0* vd e " ' - l - - x JtWx-^0*

Nhu vfy, ta dodn ring cd thl

Ue' -1) - (e"' -1)] ~ 2x khi x^O* hay

( e ' - e " ' ) ~ 2 x khix-*0\ j ^ ^6^ each gidl bdi

todn Id nhu sau:

Gldl: Cgc diem: x = 0

Dl thiy — Id hdm so duoi^ USn (0,1],

e ' - e '

khd tich tren mpi dogn [a, 1] vdi a > 0

lim : — = lim — = lim ::- = 1

'•^ye'-e~' 2x) i - t o ' e ' - e x->^e +e

md J— phdn kl nSn tich phan dd cho phan ki

^2x

Vf dy: Khi hpc d phan tich phan tm Idp, sinh

vifn d3 bilt ring:

+ jjdxdy = S (S Id dif n tich miln D)

D

+ N I U miln D cd tinh dli xflng qua tryc Ox vd bilu

tiiflc cfla fix,y) IS doi vdi y tiii JlfU,y)<ixdy =0

D

Nhu vfy, khi hgc tich phan ba ldp, hg cd thl suy

lufn tuong ty (dua ra gid thuyet) ring

+ jjjdxdydz = V {V Id till tich mien V)

va bilu thflc cua f(x,y,z) le ddi vdi z tiii

Id lllfix,y,z)dxdydz = 0

Nhan xdt: "Moi quan hf gifla quy ngp vd dien dich Id moi quan hf kl thfla, tgo tien de, bo sung

va ho trg cho nhau trong qud trinh nhfn thflc" ([1],

U.47) Quy ngp cung cip phdn dodn, ldm co sd cho dien dich Dien djch giflp kilm tra tfnh dflng din cfla suy lugn quy n ^ , dilu nay cd thl dua din kit lufn phdn dodn la dflng, ho$c nlu bdc bd thl sS d^t ra phdn dodn quy ngp mdi, giflp quy ngp sau din gin vdi ban chit hifn tupng hem

Bk phdt Uiln khd ndng suy lufn, sinh vifn nen

thudng xuyfn kit hp^ sfl dyng cd hai dgng suy lufn

USn, ddng thdi phdi chfl f dk khdng mdc phdi nhQng

sai lim Uong suy lufn 4 Mft s6 vi dy vl suy lufn khdng dflng cfla sinh vien trong hpc tfp Todn cao cip Trong khi gidi bdi tfp todn cao cip, mft sl sinh viSn cdn cd nhflng sai lim trong suy lufn Chdng hgn:

+ Tfl mfnh dl dflng p^q, c6 q dflng, si^ ra

p dung

+ Sai khi vilt phfl djnh cfla mft mfnh dl, sai khi suy lufn vdi mfnh dl cd lugng tfl phi biln, lupng tfl tin tgi

+ Sai khi vfn dyng suy lufn quy ngp khdng hodn

+ Sai khi khdng chfl ^ din luft ding nhit Sau day Id mft vdl vf dy vl cdc sai lim nfu Uen

T«j ^L ui i J-, ^ x*sin— Idil x^O

Vi dy: Cho hdm so / ( x ) = x

A khix = 0

TimAdl / ( x ) khd vi tgi jc = 0

Gidi: Dl / ( x ) khd vi tgi x = 0 * ! cin

dilu kifn fix) lien tyc tgi x = 0, nghTa Id

lim/(x) = /(x„) = ^ Tacd lim/(x)=limx^sin-=D

Vgy vdi A~0 thi / ( x ) khd vi tgi jc = 0

* B ^ gidi sai vl cho ring hdm s l lifn tyc tgi

x = 0 thl sS khd vi tgi x = 0 Sai lim ndy cd till do sinh vien khdng nhd chinh xdc djnh If, hofc do suy

lugn kilu: Tfl mfnh de dflng p=>q, cd q dimg,

suy ra p dflng

Trang 4

Vf dy: Xet sy hgi ty cfla chuoi sd y\— ^

^^[2 +n

Gidi;Tacd lim =lim— = 0 = * ^

hfity

• Sai lim tuong ty d vi dy tren, sinh vien cho

rdng lim u„ = 0 => ^ u„ hfi ty

Vfdu: Tim gidi hgn: vi = lim

cot*x—;-'^\ ^)

Gidl:

, , fcos^x I^ , f'cos'x 1 1 , -sin^x ,

-4=lim—1 r p l i m — j r-

=lim—j—=-l-'-^^sinx r J '-^\_sinx sinxj '-« smx

* Ldi gidi sai khi vilt

, fcos^x 1 ^ , f cos^x I I ^ ,

hm —5 r =lim -7-; r-;- tuc la suy

'-*<»\^smx X ) '-"l^sin^x sin x j

lugn kieu

a ~ a, khi x->Xfj

P- 0X f^' X-> XQ

I:

2,

( 6 bii aky dip 6n diing Ik A = ~)

Vfdv: Tim cvc trj ciia iiams6 f^x,y) = x* +/

Glai: C 6 / ; = 4x'; / ; = 3 /

H t a s6 c6 m?t dilm t4i lljn 14 M, (0,0)

T^M,(0,0) c6s'-rl=0

Trong mpi ISn c§n ciia Mo(0,0), x^t cfic diem

mx,0) Tac6 / ( M ) - / ( W „ ) > 0 V^ylltasddSt

cilctieut?iM,(0,0) v i / ( M , ) = 0

• Sai 1 ^ c6 till vl chua iiiiu rd dinti ngliTa cvtc

tri, cijua llilu r5 ve cSc liriTng tii "t^n t^i", "mpi",

iip$c da dflng suy l u ^ quy n^p ]di6ng liofin toan

Vf dv: HSy ciiijmg minli dinh li Cauchy

(Cho f, giAckc him s6 iien tyc trSn [a, b];

kh4viti«n(a,i);

g'(:t)*0 v6i VATS (a,*).Khi d6, t6n t?i

Vilyi cre(a,A)saocho —-T- r T =

-77T'-Gidi: Do / lien tyc tren [a, b]; khi vi tren (a, b) nen theo dinh li Lagrange, t6n t^i c G (a,b) sao cho nb)-na) = /XcXb-a)

Tucmg ty, tdn tgi ce{a,b) sao cho gib)-gia) = gXcXb-a)

fib)-fia) fjc) g{b)-g(a) g'(c)

* Sai lira trong chflng minh d ddy Id dd khdng

chfl ^ din lugt ding nhit Sl c trong bilu thflc

f{b)-f{a) = fXcXb~a) vd s l c trong bilu tiiflc gib) - gia) = gX^Xb - a) Id khdc nhau

K £ T LUAN Vifc hieu rd vl cdc dgng si^ lufn sS giflp mSi

ngudi bilt vgn dyng SIQ* lufn tit hon Be cd nhflng

suy lugn dflng vd nhanh, ngu&i hpc cin nim vttng cdc quy tie Idgic, hilu cdc djnh nghTa, djnh li mft cdch chlnh xac, chu ^ dieu kifn cln vd dfl trong mSi djnh

If, liSn hf gifla cdc cdng thflc Idgic vdi cdch suy nghT

dl hilu hon Hai dgng suy lufn dien djch vd qi^ ngp

cd mdi quan hf vdi nhau vd deu quan trpng trong sy sdng tgo "Suy lufn quy ngp khdng hoan todn" mang lgi hifu qud cao trong qud trinh ^di quylt vin dl, Tuy vdy, chi nen dp dyng suy lufn ndy dudi dgng gid thifet, cin kilm tra lgi sy chfnh xdc cfla kit lufn trong tflng tmdng hpp cy thl

Tdi lifu tham khdo

1 Phan Dung (2012) Tu duy Idgich biin chung

vd hi thing, NXB Dgi hgc Quic gia TP HCM

2 Dy dn Vift- Bl, Bf Gido dye vd Ddo tgo

(2000) Dgy cdc kS ndng tu duy, Hk^^u

3 LS Bd Long, Gido trinh Dgi sd, NXBTTVTT,

2010

4 Chu cim Tho (2015) Phdt triin tu duy thdng qua dgy hgc mon todn a trudng phd thdng, NXB Dgi

hgc su phgm, Hd Nfi

5 Nguyin Anh Tuin (2012) Gido trinh Logic todn vd lich sir todn hgc, NXB Dgi hgc Su phgm,

HdNfi

Ngày đăng: 17/11/2022, 22:00

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w