Trinh Thj Phuang Thao vd Dig T^p chi KHOA HQC & CONG NGHE 104(04) 113 M O T S O T I N H HUONG DIEN HINH TRONG DAY HQC TIN HQC 6 TRlT^NG TRUNG HQC PHO THONG Trjnh Thj Phuo''''ng Thdo'''', Tr^n Thanh Thuong^''''[.]
Trinh Thj Phuang Thao vd Dig T^p chi KHOA HQC & CONG NGHE 104(04) 113- M O T S O T I N H HUONG DIEN HINH TRONG DAY HQC TIN HQC TRlT^NG TRUNG HQC PHO THONG Trjnh Thj Phuo'ng Thdo', Tr^n Thanh Thuong^', Trmh Thanh Hii' 'Trudng Dgi hpc Supham - DH Thdi Xgiiy •Dai hoc Thai \giiycn ^Trudng Dqi hpc Khoa IIQC - DH Thai TOM T A T Bai viet de xudt phuong phdp day hgc mgt so tinh hudng thudng gap day hpc lin hgc d trudng phd thdng (nhOng linh huong didn hinh d^y hgc lin hgc) theo djnh hudng ho?t dgng hda ngudi hoc Til' khda: phuang phdp dgy hoc tin hpc, hogt d0ng Irong dgy hgc tin hpc DAT V A N D E Trong day hgc Tin hge a trudng phd thdng thi day khai nigm, day cdu Ignh, dgy quy trinh, day lap trinh giai toan, day thuc hdnh tren may tinh cd the coi Id nhii-ng tinh hudng dien hinh day hgc tin hgc Van dyng quan diem boat ddng (HD) [4] vdo day hgc tin hoc, chiing ta cd the dua nhijng djnh hudng de thiet ke cac HD, tao cdc tinh hudng cd dung y su pham nham tao mdt mdi trudng thuan Igi de hgc sinh (HS) tiep can va chiem Imh tn thuc, hinh vd ren luyen ky nang mdt cdch chii ddng, sdng tao DAY HOC K H A I NIEM - Dinh nghTa khdi nigm: HS dua djnh nghTa khdi mem d dang tudng minh hoac thdng qua md la - Nhdn dang khdi niem: HS xdc djnh rd ddi lugng cd thudc ngoai dien ciia khdi niem hay khdng'' tire la HS can xdc dmh ddi lugng cd dn chiia cdc dau higu dac trung (ngi hdm) cua khai nigm hay khdng? The hign khdi niem: HS chi nhirng ddi tugng thod man djnh nghTa khai niem Tuy nhien, ddi vdi mgt sd khdi nigm khdng qua triru tugng thi cd the td chu'c budc chinh Id tiep can, djnh nghTa khai nigm va nhan dang, the hign khai nigm Vi du 1: Day khdi nigm "Bieu thirc quan he" (trang 27, [2]) Viec day hgc khdi nigm cd the trien khai theo cac budc sau: - Tiep can khdi nigm: HS phdt hien ddu hieu dac trung cua khai niem ciing nhu mdi lien he vdi cac khdi nigm da biSt trudc dd Budc 1: Tiep can khdi niem HD cua gido vien HD cua hoc sinh I?] Hay lay vi du ve bieu thuc quan he Nhac lai bieu thirc quan he, phep loan quan he mon loan, vi du: A > 0, x > -b/a loan hoc ma cdc em d3 bi^t Budc 2: Dinh nghia khdi niem HD cua gido vien Bieu thuc quan he c6 dang' HD cua hoc smh Nhan dang Hai bi6u thirc so hgc < Phep todn quan he> < Biiu thiic 2> hoac hai xdu hen ket vdi Trong bieu thuc I va bleu ihuc ciing Id xau hoac cimg la bieu bdi phep loan quan he cho ta thuc s6 hoc mot bieu thirc quan he Vidu x < , i+1 > = 2*j Email: lranthanhthuong(i^lnu edu v, Trinh Thi Phironu Thao va Dig 104(04): 113-119 Tsp chl KHOA HQC & CONC NOHE Bu6c 3: Nhgn dgng khai ni^n HD cua gido vien |?j Trong cdc trudng hgp sau, ddu Id bi^u thi^c quan hg a) 2*x < {vdi x la sd thifc} b) i+l > = 2*j {vdi i, j la so nguyen} c) •T>6 d) 2i >i-l {vdt i.i Id sd nguyen) Bi^u thirc quan h^ dugc thyc hign theo trinh ty: Tinh gid trj cAc bieu Ihuc, Thyc hign ph^p todn quan h$ Hay cho nhdn x^t v^ ket qua thyc hign mdt bieu thirc quan hg HD ciia hoc sinh a, b: Ld bieu thurc quan h§ c: Khdng phii \i bi^u thuc quan he vi bigu thiic hai ve khong ciing kieu d: Khdng phSi Id bleu thiic cjuan hg vl vi trdi khdng phdi Id bieu thirc sd hgc Ket qud cua bilu thiic quan h§ 1^ gid trj Idgic: True (dung) hoSc False (sai) Budc 4: The hii-n khdi ni^m HD cua hgc sinh HD cua gido vien Hay ldy mgt bieu thiic quan hg thugt to4n \tt mgi s6 ty nhien n cd phai la so chSn hay khdng vi xic djnh rd tirng thdnh phan ciia biiu thirc dd Bieu thiic quan hg: (n mod 2) ^ Bieu thiic 1' nmod2 Bieu Ihiic 2: Ph^p todn quan he "=" 1^ Dieu kign Ak dilm M cd tga dg (x; y) thugc hinh trdn sqr(x-a)+sqr(y-b) t h e n W r i t e l n ( ' s o l a n x u a t hien cua k i t u ' , c h ; , ' l a : ' , Dem[ch]); readln; end Budc 4: Nghien ciru ldi gidi: GV cd the dua mgt sd yeu cau de HS phat trien tu thuat toan va hieu sau hem viec xir ly cac ki ty, xau ciia Pascal, chang han: - De Idi gidi chinh xac, xau S cd the nhdp tiiy y dugc khong? - Hay sua lai chuang trinh neu khai bao "Var Dem: Arrayf'a' 'z'j of byte " - Neu khdng doi tdt cd cac ky tu cua xdu S chir in hoa thi cd dem dugc chinh xac so ky t^ theo yeu cau cua bai tap khdng? - Viet chuong trinh theo hudng khai thac ma ASCII cua kytu LCil KET Cung nhu cac mon hgc khdc, vigc day hpc Tin hgc can dugc thyc hign HD va bang HD ty giac, tich cue, chii dgng va sdng tao ciia nguoi hoc [4] Can CUT vao cdc tinh huong dien hinh d^y hgc tin hgc, GV phdn tich ngi dung, myc dich, trinh dg HS, trang thiit bj hien cd ma tua chgn cho HS tap luygn va thuc hien nhirng HD tilm dn ngi dung bai hoc Day chinh la mgt nhii'ng bien phap kha thi nhdm tich cyc hda HD hgc tdp cua hgc sinh, gdp phdn ndng cao chdt lugng day hgc tin hoc nha trudng THPT Trjnh Thi Phuong Thao vdfi/g Tap chi KHOA HQC & CONG NGHE TAI LIEU T H A M K H A O 104(04): 113- 119 [1] BO GD&DT (2007), Tdi lieu boi dudng GV ihuc hien chuang trinh SGK lap 11 mdn tin hgc, t^l- ^° S' ^^"^ ^ " (2008), Sdch Gido khoa Tin hgc 12 Nxb Giio dye Vigt Nam [4] Nguyen Bd Kim, Le Khac Thinh (2006), Phuang phdp day hgc Tin hgc (phan phuang phdp Nxb Giio due Viet Nam Nxb Giiodye Viet Nam '^^ ^°^ ^^' ^'^"^- ^^^ ^ ' ^^^ ^u ph^m ^^^ ^^.^^ ^^^^^ l_|., ^^^^^^^ Phuang phdp dgy [2] Ho ST Dim & cs (2008), Sdch Gido khoa Tin f,^^ „ „ / j ^ ^ (phdn phuang phdp giang dgy cu the), hgc II, Nxb Gido due Viel Nam Nxb Giio dye Vi^t Nam SUMMARY SOME TYPICAL SITUATIONS IN I N F O R M A T I C S T E A C H I N G A T H I G H S C H O O L Trinh Thi Phuong Thao", Tran Thanh Thuong^*, Trinh Thanh Hai^ 'College of Education - TNU, 'Thai Nguyen University, College of Sciences - TNU The article suggested teaching methods for some common situations in teaching informatics at high schools (the typical situations in teaching informatics) oriented for activation of leamers Keywords: Informatics teaching methods: activities in leaching informatics Ngdy nhgn bdL26/3/20!3, ngdy phdn bien:08/4/2013, ngdy duyel Email- tranthanhlhuong@tnu.edu.v ddng:24/4/2013 ... hien tai phdng mdy Ihi HS nhdp chuang trinh vao mdy tinh, soat ldi cu phap, thuc hien chtrong trinh vdi cdc bd test nham mmh hoa cung nhu kiem tra tinh dung dan cua giai thuat da chgn Vi dy (bai... hgc khdc, vigc day hpc Tin hgc can dugc thyc hign HD va bang HD ty giac, tich cue, chii dgng va sdng tao ciia nguoi hoc [4] Can CUT vao cdc tinh huong dien hinh d^y hgc tin hgc, GV phdn tich ngi... chuang trinh SGK lap 11 mdn tin hgc, t^l- ^° S'' ^^"^ ^ " (2008), Sdch Gido khoa Tin hgc 12 Nxb Giio dye Vigt Nam [4] Nguyen Bd Kim, Le Khac Thinh (2006), Phuang phdp day hgc Tin hgc (phan phuang phdp