1. Trang chủ
  2. » Tất cả

Sư dụng yếu tố trực quan trong dạy học bảng nhân ở lớp 2, lớp 3

4 4 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 263,68 KB

Nội dung

HUONG DAN QUAN LISU DUNG Stf DUNG Ylu T 6 TRirC QUAN TRONG DAY HOC BANG NHAN H L0P 2, L0P 3 Bing nhan cimg vdi bing cpng, bing tru va bang chia Ii cic cdng cy quan tipng tiong vipc hinh thinh kl nang[.]

HUONG DAN QUAN LISU DUNG Stf DUNG Ylu T TRirC QUAN TRONG DAY HOC BANG NHAN H L0P 2, L0P Bing nhan cimg vdi bing cpng, bing tru va bang chia Ii cic cdng cy quan tipng tiong vipc hinh thinh kl nang thyc hipn bdn phep tinh cgng trir nhan chia tiong chuang tiinh Toin tieu hgc Bing nhin dugc dgy d ldp v i Idp 3, giai doan dau cua chuang tiinh Toin tieu hgc Do nhiing ban che ciia HS ve mat nhan thuc va xuat phit tir quan diem xiy dung ngi dyng day hgc bing nhin ciia SGK m i d giai doan viec su dung cic yeu to true quan (YTTQ) se gdp phan hd trg q u i trinh day hgc bing nhin cho HS Bai viet niy, trinh bay co sd xiy dyng bang nhan tir dd dua mdt sd phuang in su dung YTTQ tiong day hgc mdt so bing nhan tiong SGK Toan v i Toan Xay d u n g bang nhan va n$i dung day hoc bang nhan a Xay dung bang nhan Cac bing nhin ma HS dugc hgc tiong chuong trinh Toin Idp v i Idp deu cd cau tgo nhu nhau; nghia la de lap dugc bing nhin HS can thyc hien viec tim ket q u i cua c i c phep nhin lan lugt cua sd dd vdi cac sd tii den 10 Vi dy de lip dugc bing nhan 2, HS phii tim ket q u i cua cic phep nhin; x 1; x ; 2x ; x ; x _ Thuc chit, ciu tao ciia bang nhin Ii tip hgp cic phep nhan cua sd vdi cic sd tir I den 10 Do viy, trudc het ta cin xem xet cich xiy dyng Ngdy nh$n bai 29/12/2012; Ngay duy?t dang 22 Triic Quynh Trudng TH So Qudng Thp Qudng Dien, Thua Thien Hue phep nhan tiong chuong trinh Them n&a, nua, theo cich djnh Toin tieu hgc hipn hinh Hipn nghia niy, chimg ta cdn quy nay, de xiy dyng phdp nhin, udc; a x O = ; a x l = a Tuy ngudi ta xuat phit tir nhieu nhien cich dinh nghia niy de quan diem khic nhau: tilp can doi vdi trinh dO ciia *Li thuyet dnh xg\ Phep HS tieu hpc c i c Idp dau cip nhan tiong tip hgp so ty nhiSn Ddi sy chinh xic ciia khoa dugc xem Ii mgt inh xa: hpc phii nhudng cho cho tinh su phgm de phu hgp vdi dgc f: NxN -> N (a,b) i-> a X b, tiic Ii diem tu ciia HS quy tie cho ^ tuong img: b Nfi dung dgy hpc bang Vdi mgi cap sd tjr nhien (a, b) nhan ling vdi mgt sd ty nhien c Trudc day hpc bing dugc ggi l i tich a x b Quan nhin dau tien - bing nhan diem dugc sir dung de xay - SGK Toan d i xiy dyng dyng c i c bii tip d tiong SGK mpt so bii hgc nhu: Tdng cua *Phep nhdn Id mpt phep nhieu so; Phep nhdn; Thua sd - Tich, tiong xuit hi?n cong dgc biet Phep nhan dugc xem la cac phep cdng cd cic sd hang mpt trudng hgp d i e bipt ciia bing nhau: phep cgng, tiong cic sd 6+6+6+6+6=; hang deu bang nhau, mdt each + + 15+15 = ; tdng quit ta cd: 24 + + + = ;^ a x b ^ a + a + a + + a + a v i cic bii tgp yeu cau HS chuyen tii phep cgng cac so b sd hang hgng bang sang phep nhan hoac ngugc Iai Vi dy (a dugc lay b Ian) Cich niy dugc SGK sir (Toin 2, tr.94): Bii 1: Viet cic tdng sau dung de hinh thinh phep nhin cho HS Cu thi SGK Toin,2 diy dudi dgng tich (theo miu) xuat phat tir tinh hudng: Iiy a) + + = ; tim bia, mdi tam bia cd hai b) + + + = ; cham tidn v i yeu cau HS tinh c) + + 10 = ; xem tat c i cd bao nhieu cham Bai 2: Viit cic tich duoi tidn Tir hudng dan HS di dang tdng cic sd hang bang din phep cgng: + + + rdi tinh (theo miu) + = 10 v i gidi thieu phep a) x ; x nhin: x = 10 b) X 4; X Viec xiy^dyng cic bai tap Cich dinh nghTa niy khdng tuan theo su phit trien ciia n^i nhu vgy nhim m^c dich t?o h i m khii niem; HS chi biet CO sd cho vipc tiep c$n khai phep nhin nhu la mot phep nipm phep nhin ciia HS: phep Id -mpt cdng d i e biet, tiong dd cd c i c nhdn — , - ^phep^ cpng ^ d^c sd hang giong chir khdng bift cd cdc so hgng phai Ii mgt phep toan mdi bdng 25/03/2013 • TAP CHI THIET BI GIAO DUC-SO 92-04/2013 HUONG DAN QUAN LI SU DUNG C i c bing nhin dugc dgy hgc theo hai giai doan: Ldp 2, HS duac hgc cic bing nhin 2, 3, 4, 5; Ldp 3: HS dugc hgc cic bing nhan 6,7, 8, Cich xay dyng bai hgc hinh bing nhin kha^ gidng Mdi bai hpc ve bing nhan, SGK deu sii dung hinh inh cic t i m bia cd cic cham tidn gidng v i minh hga cich hinh thinh mgt sd phep nhin va viet sin cic phep nhin cdn Igi ciia bing nhin dang hpc (nhung chua cd ket qui) Sau mdt bii hgc nhu vgy thi diu cd bii Luyen tap de cimg cd luyen tap cic ki nang cho HS Ve he thdng bii tap cho ndi dung niy thudng cd dgng: - Tinh nhim: Cic phep nhan dugc sap xep khdng theo thii ty tiong ciu tao bang nhan v i yeu cau HS tim ket qua - Bai toin cd Idi van; Thudng Ii mdt bii toin dan giii bang mdt phep nhin lien quan den bing nhin dang hgc - Bii toin bang d: Thudng cd yeu cau: Dem them (3, 4, 8, 9) rdi viet sd thich hgp v i o d tiong Su d u n s Y T T Q day hpc mot so bang nhan Su dung YTTQ tiong dgy hgc cac bing nhan thudng theo mdt quy trinh nhu va b i m sit cich trinh biy cua SGK Trong phin niy, chung tdi xin gidi thipu so lugc cac phuong an day hgc phin Ii thuylt, minh hga mgt sd bing nhan d mdi Idp, chu y l u vin dua v i o cic YTTQ dl, lim diem tya hinh thinh kiln thurc cho HS Phin n i y se khdng di vao chi tiet cua timg bii day, m i chi dinh hudng d mgt sd diem ca bin a Day hpc bang nhan D i y la bing nhan dau tien dugc day cho HS Idp Do diy l i Ian dau tien cic em tiln h j ^ thinh I§p bing nhin nen vi§c dgy hgc ddi hdi cdng phu ban mpt chiit so vdi cic bing nhan sau Ve each day bii niy, theo cich trinh biy ciia SGK ta cd the di theo mpt sd hudng sau: * Sir dyng hinh ve o^SCK Toin 2, tr 95 GV yeu cau HS quan sit hinh ve minh hga d SGK; gidi thieu cac t i m bia, moi tam bia ve hai cham tidn; tiln hinh rt?l'| 2JtTCrclayUb,iaviei jil = [=d[-2(lu(n!lly2lin,Uvi4i'2«2=2 + - 1*1JJ V»y2x2-4 m f t t l I - duffc Iay3 lin t» n^" x - * * - Sau tien hinh thao tic vdi cic tam bia v i xic dinh dugc ket qui ciia ba phep nhan dau tien, GV phit phieu hgc tip, yeu ciu HS tim ket qui cua cic phep nhan cdn Iai bing nhin Thuc te cho thay tiong phin khdng nen yeu cau cac em sir •2layl lante2,taco:2xI =2 2x1=2 dung diing true quan niia, •2liy21andugc4,tac6:2x2 = 2x2M bdi cic em thudng thao tic kha ldn xdn tiong boat ddng -2%3lante6,taco: h] = (i 2x3=6 nhdm sd lugng tim bia dim thoai de dugc cac ket qui tang len GV nen hudng cac em den viec chuyen tir phep sau: GV tien hanh tuang tu de nhan sang phep pong cac sd hoin cic phep nhin cdn hang bang de tim ket q u i lai tiong bing nhan Khi cd cua mdi phep nhan Sau day du cac phep nhan tir x cac nhdm hoan thanh, GV yeu den X 10, GV gidi thieu day ciu cic nhdm trinh biy cich Ii bang nhan v i tien hanh tim ket qua cua mgt vai phep cho HS hpc thupc ldng bang nhin tiong bing nhin Sau dd tien hanh cho cic em hgc nhan * SUT d u n g Bg dung thupc long Toan va phieu hpc tap Phieu hgc tip O cich day niy GV v i HS sir dyng Bp dimg Toan 2x1=2 2x6 = vdi cic tim bia nhua, cd 2x2 = chim trdn GV thao tic trudc 2x7= rdi HS mdi thao tic tien tim 2x3 = 2x8 = bia nhya sau GV gidi thieu 2x4 = 2x9 = cic tim bia, moi tim, bia ve x 10 = 2x5 = hai cham tidn, v i tien hinh thao tie theo tiinh tu sau: b Day hpc bang nhan Trong chuang trinh Toin 2, GV sir dyng cac t i m bia, thao tac gan len tien bang, sau HS da thiet lap dugc cic bang yeu cau HS Iiy tiln hinh nhin 2, 3, ya Bing nhan tuang ty vdi cac tim bia dl d dugc day dau tien d chuong tien bin vdi timg trudng hgp trinh Toan D i e diem ve de hinh thinh ba phep nhin nhan thirc cua HS liic d i dau tien tiong bing nhan phit trien hon so vdi vdi HS Trong moi trudng hgp GV hudng ldp Mat khac, thdng qua din HS didng, qua ^ m thogi de viec thiet lip cic bing nhan d ldp 2, HS da nam dugc ciu cd dugc cic kit qui sau: TAP CHI THIET BI GIAO DUC-SO 92-04/2013 • 23 HUONG DAN QUAN LISU DUNG tgo, quy trinh, y nghia cua vipc th^mh lip bing rUiin Do dd, vipc sir dyng YTTQ tiong dgy hgc bing nhan d chuang trinh toin cin hgn che, vi chuyen din miic dp tryc quan Sau diy li mgt vii ggi y de dgy bing nhan * Sir d^ng hinh inh d SGK Toin GV yeu ciu HS quan sit hinh ve minh hga d SGK; gidi thipu cic tim bia, mdi tam bia ve chim tidn; tien hinh dim thoai de dugc cac ket qui sau: •6dLivcliyllinlii(ic6,iaci: 6x1^6 -6ilLHFclSy2lan(li[i;cl2,taci; 6x2-6 + = 12 •6iu?cliy3liii(lin?cl8,laci'6iil=6 + 6+6=ll Ddi vdi cic phep nhin cdn I g i : x = ; x = ; ;,6x,9 = ; X 10 = HS cd thi viit kit qui dya vio phep cdng cic sd hgng bing hoac dya vao nhan xet: ket qui ciia phep nhin lien sau bang ket qui ciia phep nhan lien tnrdc cdng vdi Sau dd cho HS tien hinh hgc thudc long bing nhan * Su dung Bo dung Toan Sii dung cac tim bia cd chim trdn tiong Bg diing Toin GV lay mdt tam bia cd sau cham trdn dinh len bang HS ciing lay tim bia cd cham trdn de tien bin GV tien hanh hdi dip de cd dugc ket qua: Ddi vdi cic phep nhin cdn lgi: x = ; x = ; ;6x9 24 = ; x l = HScd till viit kit qui dya vio ph6p c$ng cic so hgng bing h o ^ dya vio nhgn x^t: kit qui cua p h ^ nhin lien sau bing kit qui ciia ph6p nhan liln trudc cgng vdi Sau dd cho HS tien hinh hgc thuge ldng bing nhin * Su dyng phuong phdp nSu vi giii quylt v^n dl Thyc tl li sau hgc xong cic bing nhin d Idp ,2, HS thudng td khdng miy hio hiing vdi cich tiep can kien thiic dya vio cic yeu to tryc quan mi chu ylu li cic tim bia Cic thao tic cii lgp lai vipc tien hinh tim ket qui d moi bing nhan khien tiet hgc tid nen don dieu Do vay ta cd the hudng den viec giiip cac em ty thinh lap bing nhin (7, 8, 9) tien co sd cac thao tic mi cac em da tien hanh d cac bing nhin trudc Cd the tien hanh nhu sau: Buac 1: Giiip HS ndm du^rc cdu tgo bdng nhdn Neu cac phep nhin cd tiong bing nhan (6 x ; x2; ;6xlO).HSviraneuGV vira viet cic phep nhan cua bing nhin len tren bing Buac 2: Tim kit qud cdc phep nhdn bdng nhdn ^ GV phat phieu hpc tap ghi san cic phep nhan tiong bang nhan (chua cd ket qui) Chia lap cic nhdm vi ydu ciu tim ket qua cic phep nhan tiong bing nhin Buac 3: Gidi thich cdch ldm Sau cic nhdm hoin thinh philu hpc tap, GV yeu cau cac nhdm bio cio kit qui lam viec vi giii thich each Iam cua nhdm minh HS cd thi tim ket qui dua vio cic each sau: Midm 1: Thyc hien cic phep cdng cac so hang bing • JI^P CHI THIET BI GIAO DUC - SO 92 - 04/2013 nhau, tiic li chuyin phep nhin sang phep c$ng Vi dy: X = + = 12; x = + + 6= 18; 6x9 =6+6+6+6+6+6+6+ + = 54; Cich Iam da nhdm ciing, tim kit qui nhung mat thai gian vi phii thyc hi^n nhilu phep tinh Nhdm 3: Dya vio die dilm tich cua cic ph6p nhan Ta thiy : x = x + = 18;6x4= x + = 24; Vay de tim tich lien sau ta chi can lay tich liln trudc c^ng vdi GV cho HS so sinh each lim ciia cic nhdm vi tim cich lim nhanh nhat (nhdm 3) Buac 4: Hpc thupc bdng nhdn c Lap bang nhan rut gpn Sau xay dyng toin bp cic bang nhin, de giup cic em hgc thudc nhanh va nhd lau, ta cd the giup HS xiy dung bang nhin riit ggn nhu sau: Trong tiet Luypn tip hoac phy dgo, yeu ciu HS nhac Iai tit ci bing nhin cd thira so den bing nhin cd thira sd 10 Nhac Iai hai trudng hop dac biet mdt sd nhan vdi vi nhan vdi puan sit bing nhan va hdi: neu khdng ghitiudnghpp X vi X 10tillcd tim dupe kit qui khdng? (Dugc So nao nhin vdi I ciing bing sd do; sd nio nhan vdi 10 chi viec them chu sd vio ben phai) Ciing nhan xet tuong tii voi X I vi X 10 vi xda tit ci cic tiirdng hgp nhan vdi va nhin vdi 10 d cic bing nhan Nhu viy bing nhan liic niy cd phep nhin diu tien li: x NIU bd phep nhan ta co thi tun dugc kit qui khong? (tim dugc nhd bing nhSh 2:2 x 3=6) Vgy bing nhan bd cac ( Xem dip trang 40) HUONG DAN QUAN LI SUDUNG phdp, la thugt, NXB Dai hpc Qu6c gia, H.2002 Lf lugn dgy hgc dgi hpc quin sy, NXB Quan dOi nhin din, H.2003 Nguyen Van Tu, Md hinh vd sie dgng md hinh dgy hpc sinh hpc a truang thong, Tgp chi nghien ciiu giio dye so 12, Hi Npi (1999) Phin lo«l vfi ific dinh Summary: Cl) Ihi mifctitv,nfl Military visual patterns Klim (m dfinh gifi dunfl phirong phAp rtiyc hitnb liV dvnK chd< Iirgnng, hlfu qufi are a system of specific cfic nhif m v^ df y h ^ cfic MHTQQS IrnnK •i^dgnR MHTQQS cfiA tika^ bfii S^i^B vfi qufi (rlnh df y h^c tecbological means related •uu qufi trinh dfy hgc •va chvn thl^ kt ciic closely to teaching process MMTQQS at military colleges today i i I They play an unportant - PhBn tich mvc ntu, otalf m vif df y h^c ' CIM Ihitu n4i dung role in improving teaching •^ thuyet - DAi vM glfiDR vita - Lva chgn nOI dunR Dfy hQC ' Sii dfng m6 hinh - Dil vM hf c vl(n quality and effectiveness • rvc quiin minh hof - Xfie d|nh MHTQQS Dil vftl MHTQQS - Kit lu#n, khfii qufit tik dvng Due to their diversity and n{ki dung hvc tfip - Thvc hfinh iuyfn ttp w dvng MHTQQS complexity, lecturers should follow correct procedure for Hinh 2: QuylnnhsicdmgMHTQ ')Stn>n gdjyhpc using them, fi-om preparation to selection, designation, yeu cau thyc hifin khac iihau Tai li^u tham khao: practice, application, check nhung cd mdi quan he gan bd Dd Huan, Sir dung thiet bi and assessment of theu quality, chat che, dan xen, Idng ghep nghe nhin dgy hpc, NXB effectiveness, relevance, khdng tich rdi tao thinh Dgi hgc Qudc gia, H.2001 mdt chinh the thdng nhit Dang Thinh Hung, Dgy practicality and possibility in Thyc hien tdt giai dogn hpc hien dgi- Ly lugn bien practice of teaching dyng cic MHTQQS cin xiy d\mg h^ thong cic tifiu chi cy the, khoa hgc, thiet thyc, kit hgp vdi da dgng hoi cic hinh thirc, phuang phip kiem tra, dinh gii Nhu vgy quy trinh su dyng MHTQQS tiong dgy hgc gom ba giai dogn Moi giai dogn Ii CO sd, tiln dl dl thyc hifin cd kit qui cic giai dogn tiep theo vi ngugc Igi Qui trinh su dung MHT(JQS tiong dgy hgc de bio dim chit lugng, tinh hipu qui ddi hdi dgi ngu giing vien phii tuin thii nghifim tiic, chinh xic, ch$t che cic khau cua quy trinh 1 SUT DUNG YEU TdTRirC QUAN phep nhan: x 1; x2; 3x 10 Tuong ty bing nhan se bd cac phep nhan : x 1' x 2; x3; x 10 Cii tifip ty nhu vgy den bing nhin ta chi cdn lai mgt phep nhin; X = 81 [3] Nhu vi^ vdi bing nhin nit ggn, sd lugng phfip tinh se giim di nhieu vi HS se nhd dfi ding ban, lai nim dugc mdi quan hp tryc quan vfi tinh chat giao hoin ciia phep c0ng Bing nhin Ii mgt cdng cy 40 (Tiep Iheo trang 24) bifin), Sich giio khoa, Sich giio vifin Toin 2, NXB Giio dye 2011 Do Dinh Hoan - Vii Quoc Chung - D6 Trung Hieu Vu Duong Thyy Phuong phip day hpc Toin d tilu hpc (TTDTTX) NXB Dgi hpc su phgm 2002 Dd Dinh Hoan - Hi Si Hd - Do Trung Hipu Phuang phap day hgc Toin (Tl) NXB Tii lieu tham khao: D6 Dinh Hoan (chu Giio dye 2001 quan tipng, ho tig vipc tinh toin tiong suot qui trinh hgc tap d bgc tifiu hgc Do vgy ning cao hipu qui vipc day hgc ngi dung niy se gdp phan nang cao hipu qui dgy hgc mdn Toin d tieu hgc Sii dyng cac YTTQ tiong dgy hpc ngi dung niy cin chuyfin din miic dg d cic ldp, tiinh trudng hgp Cling nhic phy thu^c vio each tiinh biy cua SGK • TAP CHI THIET BI GIAO DUC-SO92-04/2013 ...HUONG DAN QUAN LI SU DUNG C i c bing nhin dugc dgy hgc theo hai giai doan: Ldp 2, HS duac hgc cic bing nhin 2, 3, 4, 5; Ldp 3: HS dugc hgc cic bing nhan 6,7, 8, Cich... sir •2layl lante2,taco:2xI =2 2x1=2 dung diing true quan niia, •2liy21andugc4,tac6:2x2 = 2x2M bdi cic em thudng thao tic kha ldn xdn tiong boat ddng -2%3lante6,taco: h] = (i 2x3=6 nhdm sd lugng... nhSh 2:2 x 3= 6) Vgy bing nhan bd cac ( Xem dip trang 40) HUONG DAN QUAN LI SUDUNG phdp, la thugt, NXB Dai hpc Qu6c gia, H.2002 Lf lugn dgy hgc dgi hpc quin sy, NXB Quan dOi nhin din, H.20 03 Nguyen

Ngày đăng: 12/11/2022, 00:26

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w