1. Trang chủ
  2. » Luận Văn - Báo Cáo

Tổng hợp nanocellulose từ phụ phẩm nông nghiệp và ứng dụng

114 6 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Nội dung

I H C QU C GIA TP HCM TR NGă I H C BÁCH KHOA NGUY N TH XUÂN CHI T NG H P NANOCELLULOSE T NÔNG NGHI P VÀ PH PH M NG D NG SYNTHESIS OF NANOCELLULOSE FROM BIOMASS AND APPLICATION Chuyên ngành: K THU T HÓA H C Mã s : 8520301 LU NăV NăTH CăS TP H CHÍ MINH, tháng n mă2022 i CỌNG TRỊNH C HOÀN THÀNH T I TR NG I H C BÁCH KHOA ậ HQG -HCM Cán b h ng d n khoa h cμ PGS.TS Lê Th Kim Ph ng Cán b ch m nh n xét 1μ TS Tr n Ph c Nh t Uyên Cán b ch m nh n xét 2μ PGS.TS Ph m Trung Kiên Lu n v n th c s đ c b o v t i Tr ng i h c Bách Khoa, HQG Tp HCM, ngƠy 14 tháng 08 n m 2022 ThƠnh ph n H i đ ng đánh giá lu n v n th c s g mμ PGS.TS Nguy n Tr TS Tr n Ph ng S n - Ch t ch c Nh t Uyên - Ph n bi n PGS.TS Ph m Trung Kiên - Ph n bi n TS Ph m HoƠng Huy Ph TS Ph m Th H ng Ph cL i ng - Th kỦ - y viên Xác nh n c a Ch t ch H i đ ng đánh giá LV vƠ Tr sau lu n v n đư đ ng Khoa qu n lỦ chuyên ngƠnh c s a ch a (n u có) CH ăT CHăH Iă PGS.TS.ăNguy năTr NG TR NGăKHOAăK ăTHU TăHịAăH C ngăS n ii C NG HOÀ XÃ H I CH NGH AăVI T NAM I H C QU C GIA TP.HCM TR NGă c l p ậ T ậ H nh phúc I H C BÁCH KHOA NHI M V LU NăV NăTH CăS H tên h c viên: Nguy n Th Xuân Chi MSHV: 2070164 NgƠy, tháng, n m sinhμ 28/03/1λλ5 N i sinhμ V nh Long Chuyên ngành: K thu t Hóa h c Mã s : 8520301 I TểNă TÀI: Tên ti ng Vi t: ắT ng h p nanocellulose t ph ph m nông nghi p ng d ng” Tên ti ng Anh: ắSynthesis of nanocellulose from biomass and application” II N I DUNG TH C HI N:  nh h ng c a ph ng pháp c h c tách s i đ n trình thu h i cellulose t d a  Kh o sát nh h ng c a ph thu h i cellulose t d a ng pháp hóa h c ki m hóa vƠ t y tr ng đ n q trình  Kh o sát nh h b ng ph ng c a thông s công ngh đ n trình t ng h p nanocellulose ng pháp th y phơn acid  T ng h p mƠng biocomposite III NGÀY GIAO NHI M V : 1/2022 IV NGÀY HOÀN THÀNH NHI M V : 6/2022 V CÁN B H CÁN B NG D N: PGS.TS LÊ TH KIM PH NG TP.HCM, ngƠyầthángần m 2022 H NG D N CH NHI M B MỌNă ẨOăT O PGS.TS Lê Th Kim Ph ng PGS.TS Lê Th Kim Ph ng TR NG KHOA K THU T HÓA H C iii L I C Mă N hoàn thành lu n v n nƠy, đ u tiên tác gi xin trân tr ng g i l i c m n sơu s c chơn thƠnh đ n PGS.TS Lê Th Kim Ph ng đư tr c ti p h ng d n, h tr r t nhi u cho tác gi v ki n th c c ng nh tinh th n su t trình h c t p th c hi n lu n v n Tác gi xin g i l i c m n đ n anh ch nghiên c u sinh, h c viên, nghiên c u viên b n sinh viên Trung tâm Nghiên c u Cơng ngh L c Hóa D u (RPTC), Tr ng i H c Bách Khoa - HQG TP.HCM đư h tr tác gi su t trình h c t p nghiên c u Bên c nh đó, tác gi xin g i l i c m n đ n gia đình, ng i thân đư quan tơm, đ ng viên, t o m i u ki n thu n l i cho tác gi su t th i gian th c hi n lu n v n nƠy Cu i cùng, tác gi xin c m n Trung tơm Nghiên c u Cơng ngh L c Hóa D u đư h tr kinh phí hóa ch t phân tích, xin c m n Tr ng i h c Bách Khoa ậ TPHCM đư h tr trang thi t b cho nghiên c u Tác gi Nguy n Th Xuân Chi iv HQG ậ TÓM T T Trong lu n v n nƠy, nanocellulose (NC) đ c t ng h p t d a v i ph ti n x lỦ c h c k t h p hóa h c (ki m hóa, t y tr ng) vƠ ph m i giai đo n t ng h p đ u đ nh h ki n t ng h p phù h p ng pháp th y phân acid c ti n hành kh o sát luân phiên t ng bi n đ tìm u ng c a y u t thu h i cellulose bao g m q trình ki m hóa v i NaOH t y tr ng H2O2 đư đ ng, t l r n ậ l ng T ng pháp ng t , nh h ng c a y u t t ng h p NC bao g m: th i gian, nhi t đ t l r n ậ l ng c ng đ v t li u cellulose NC phù h p đ c kh o sát nh μ n ng đ , th i gian ph n c kh o sát C u trúc - hình thái - đ c tính c a c xác đ nh b ng ph ng phápμ đ nh l ng carbonhydrate NREL, kính hi n vi n t quét, ph h ng ngo i chuy n hóa Fourier, phân tích nhi t tr ng l b kích th l ng TGA, nhi u x tia X, kính hi n vi n t truy n qua, phân c h t DLS K t qu t ng h p NC cho th y, d a sau ti n x lý có hàm ng cellulose lên đ n λ8,0λ%, đ k t tinh lên đ n 76,95% Sau thu phơn, NC có đ k t tinh t ng lên 84,31%, NC có chi u dài kho ng 100 - 300 nm chi u r ng t 10 - 50 nm S n ph m NC t ng h p đ vƠo gia c tr c k t h p v i polyvinyl alcohol chitosan ng d ng ng v t li u biocomposite MƠng biocomposite đ ng mƠng vƠ ph ng pháp xác đ nh c u trúc, đ c tính nh ph h ng ngo i chuy n hóa Fourier, phân tích nhi t tr ng l tr ng n c đánh giá đ b n kéo, đ ng K t qu cho th y, b sung thêm NC đ c gi m đ n 160% trì m c 280% gi g n l n so v i màng khơng có NC D a vào nh ng k t qu thu đ b n kéo t ng c, ph ng pháp có th phát tri n đ thu h i NC có giá tr cao t ngu n nguyên li u d a th i, NC có ti m n ng l n gia c ng c u trúc màng biocomposite v ABSTRACT In this study, nanocellulose (NC) is synthesized from pineapple leaves (PLs) with mechanical and chemical pretreatment methods (alkaliization, bleaching) and an acid hydrolysis method At each synthesis stage, each variable is alternately surveyed to find suitable synthesis conditions The influence of cellulose extract factors including alkalization with NaOH and bleaching by H2O2 were investigated, such as concentration, reaction time, and solid-liquid ratio Similarly, the effects of NC synthesis variables such as time, temperature, and solid-liquid ratio were studied The structure - morphology characterization of cellulose and NC samples were studied by determination of structural carbohydrates and lignin in biomass (NREL), scanning electron microscope, Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction, transmission electron microscopy, Analysis of Particle size distribution (DLS) The results of NC synthesis showed that PLs after pretreatment had cellulose content up to 98.09%, and the crystallinity (CrI) reaches 76.95% After hydrolysis, CrI increases to 84.31%, the length of NC was about 100-300 nm and a width of 10 - 50 nm Synthetic NC products are mixed with polyvinyl alcohol and chitosan applied to strengthen biocomposite materials Biocomposite films were evaluated for tensile strength, film swelling and structural determination methods, such as Fourier transform infrared spectroscopy and thermogravimetric analysis The results showed that, when adding NC, the swelling in the water of the biocomposite membrane decreased to 160% and remained at 280% for hours Tensile strength is increased by almost times compared to films without NC Based on the obtained results, methods can be developed to recover high-value NC from waste pandan leaf material NC has great potential for structural reinforcement for biocomposite films vi L IăCAMă OAN Tác gi xin cam đoan lu n v n nƠy lƠ cơng trình nghiên c u th c s c a cá nhân tác gi vƠ đ c th c hi n d is h ng d n c a PGS.TS Lê Th Kim Ph ng, Trung tâm Nghiên c u Cơng ngh L c Hóa D u (RPTC), Tr ng i H c Bách Khoa - HQG TP.HCM Các s li u, k t qu nghiên c u lu n v n nƠy lƠ hoƠn toƠn trung th c, ch a t ng đ c công b b t c m t công trình nƠo khác tr hồn thành lu n v n nƠy đ u đư đ đ u đư đ c đơy M i s giúp đ cho vi c c c m n, thơng tin trích d n lu n v n nƠy c ch rõ ngu n g c Tác gi xin ch u trách nhi m v nghiên c u c a Tác gi Nguy n Th Xuân Chi vii M CL C L I C M N iv TÓM T T v ABSTRACT vi L I CAM OAN vii DANH M C HÌNH xi DANH M C B NG xiv DANH M C CH L IM VI T T T xv U T NG QUAN V t li u nano 1.1.1 Khái ni m 1.1.2 Phân lo i T ng quan nanocellulose 1.2.1 S l 1.2.2 Phân lo i nanocellulose 1.2.3 c tính nanocellulose c nanocellulose 1.2.4 Ph ng pháp thu h i cellulose 1.2.5 Ph ng pháp t ng h p nanocellulose 14 ng d ng nanocellulose vào v t li u composite 21 T ng quan d a 23 1.4.1 Tình hình phát tri n, s n l 1.4.2 Thành ph n c a d a 24 ng khai thác d a viii Vi t Nam 23 1.4.3 Ph ng pháp ti n x lỦ c h c d a 25 Tình hình nghiên c u vƠ ngoƠi n c 27 TH C NGHI M 32 it ng, n i dung nghiên c u 32 Hóa ch t, d ng c , thi t b , đ a m th c hi n 32 2.2.1 Hóa ch t 32 2.2.2 D ng c thi t b 32 2.2.3 a m th c hi n 33 Ph ng pháp nghiên c u 33 2.3.1 Thu h i cellulose 34 2.3.2 T ng h p nanocellulose 39 2.3.3 T ng h p màng biocomposite 41 Ph ng pháp phơn tích đ c tính, hình thái, c u trúc v t li u 42 K T QU VÀ BÀN LU N 50 K t qu thu h i cellulose 50 3.1.1 ánh giá nh h ng trình ti n x lỦ c h c (tách s i) 50 3.1.2 K t qu kh o sát q trình ki m hóa 54 3.1.3 K t qu kh o sát trình t y tr ng 58 K t qu t ng h p nanocellulose 65 3.2.1 Kh o sát th i gian th y phân 65 3.2.2 Kh o sát t l r n ậ l ng 67 3.2.3 Kh o sát nhi t đ ph n ng 69 K t qu t o màng biocomposite 75 ix 3.3.1 Phân tích hình thái b m t SEM 75 3.3.2 Phân tích FTIR 76 3.3.3 Phân tích TGA 77 3.3.4 Kh i l 3.3.5 tr ng ng su t kéo 78 ng n c 79 K T LU N 81 DANH M C CÁC CƠNG TRÌNH KHOA H C 82 TÀI LI U THAM KH O 83 PH L C 94 LÝ L CH TRÍCH NGANG 99 x [23] A A Elgharbawy et al., "Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass," Biochemical Engineering Journal, vol 109, pp 252-267, 2016 [24] S H Mood et al., "Comparison of different ionic liquids pretreatment for corn stover enzymatic saccharification," (in eng), Prep Biochem Biotechnol, vol 44, no 5, pp 451-63, 2014 [25] H P S Abdul Khalil et al., "Green composites from sustainable cellulose nanofibrils: A review," Carbohydrate Polymers, vol 87, no 2, pp 963-979, 2012 [26] H Sangian et al., "Preparation of Reducing Sugar Hydrolyzed from High-Lignin Coconut Coir Dust Pretreated by the Recycled Ionic Liquid [mmim][dmp] and Combination with Alkaline," Bulletin of Chemical Reaction Engineering & Catalysis, vol 10, 2015 [27] F G Calvo-Flores et al., "Structure and Physicochemical Properties," in Lignin and Lignans as Renewable Raw Materials: Chemistry, Technology and Applications, V Stevens, Ed Belgium: Wiley, 2015, pp 9-48 [28] A P Abbott et al., "Deep Eutectic Solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids," Journal of the American Chemical Society, Article vol 126, no 29, pp 9142-9147, 2004 [29] A Satlewal et al., "Natural deep eutectic solvents for lignocellulosic biomass pretreatment: Recent developments, challenges and novel opportunities," Biotechnology Advances, vol 36, no 8, pp 2032-2050, 2018 [30] C Capello et al., "What is a Green Solvent? A Comprehensive Framework for the Environmental Assessment of Solvents," Green Chemistry, vol 9, 2007 [31] W.-C Tu et al., "Recent advances in the pretreatment of lignocellulosic biomass," Current Opinion in Green and Sustainable Chemistry, vol 20, pp 11-17, 2019 [32] H Chen et al., "A review on the pretreatment of lignocellulose for high-value chemicals," Fuel Processing Technology, vol 160, pp 196-206, 2017 85 [33] M N Borand et al., "Effects of organosolv pretreatment conditions for lignocellulosic biomass in biorefinery applications: A review," Journal of Renewable and Sustainable Energy, Review vol 10, no 3, 2018 [34] H Khaleghian et al., "Silica Removal from Rice Straw to Improve its Hydrolysis and Ethanol Production," Industrial & Engineering Chemistry Research, vol 56, 2017 [35] Y Zheng et al., "Pretreatment of lignocellulosic biomass for enhanced biogas production," Progress in Energy and Combustion Science, vol 42, 2014 [36] H H Nimz, "Wood-chemistry, ultrastructure, reactions," Holz als Roh- und Werkstoff, vol 42, no 8, pp 314-314, 1984 [37] P Harmsen et al., Literature Review of Physical and Chemical Pretreatment Processes for Lignocellulosic Biomass Wageningen UR, Food & Biobased Research, 2010 [38] B Yang et al., "Pretreatment: The key to unlocking low-cost cellulosic ethanol," Ltd | Biofuels Bioprod Bioref, vol 2, pp 26-4026, 2008 [39] X Xiao et al., "Influence of Particle Size and Alkaline Pretreatment on the Anaerobic Digestion of Corn Stover," BioResources, vol 8, 2013 [40] M Baucher et al., "Lignin: genetic engineering and impact on pulping," (in eng), Crit Rev Biochem Mol Biol, vol 38, no 4, pp 305-50, 2003 [41] H.-M Ng et al., "Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers," Composites Part B: Engineering, vol 75, pp 176-200, 2015 [42] S Nandi et al., "A review on preparation and properties of cellulose nanocrystalincorporated natural biopolymer," Journal of Packaging Technology and Research, vol 2, no 2, pp 149-166, 2018 [43] H Kargarzadeh et al., "Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites," Progress in Polymer Science, vol 87, pp 197-227, 2018 86 [44] R C Sun et al., "Delignification of rye straw using hydrogen peroxide," Industrial Crops and Products, vol 12, no 2, pp 71-83, 2000 [45] S Tripathi et al., "Effectiveness of different green chemistry approaches during mixed hardwood bamboo pulp bleaching and their impact on environment," International Journal of Environmental Science and Technology, vol 16, no 8, pp 4327-4338, 2019 [46] D Kaur et al., "Improvement in rice straw pulp bleaching effluent quality by incorporating oxygen delignification stage prior to elemental chlorine-free bleaching," Environ Sci Pollut Res Int, vol 24, no 30, pp 23488-23497, 2017 [47] S K Tripathi et al., "Optimization of ozone bleaching conditions for improving wheat straw pulp quality using response surface methodology," Ozone: Science & Engineering, vol 41, no 2, pp 137-145, 2019 [48] H R Lee et al., "Mild pretreatment of yellow poplar biomass using sequential dilute acid and enzymatically-generated peracetic acid to enhance cellulase accessibility," Biotechnology and Bioprocess Engineering, vol 22, no 4, pp 405412, 2017 [49] A Dufresne, "Chapter - Nanocellulose: Potential Reinforcement in Composites," in Natural Polymers: Volume 2: Nanocomposites, J John, Ed London: The Royal Society of Chemistry, 2012, pp 1-32 [50] P Phanthong et al., "Nanocellulose: Extraction and application," Carbon Resources Conversion, vol 1, no 1, pp 32-43, 2018 [51] N Lavoine et al., "Microfibrillated cellulose ậ Its barrier properties and applications in cellulosic materials: A review," Carbohydrate Polymers, vol 90, no 2, pp 735-764, 2012 [52] T Abitbol et al., "Nanocellulose, a tiny fiber with huge applications," Current Opinion in Biotechnology, vol 39, pp 76-88, 2016 [53] O Nechyporchuk et al., "Production of cellulose nanofibrils: A review of recent advances," Industrial Crops and Products, vol 93, pp 2-25, 2016 87 [54] A Dufresne, "Nanocellulose: a new ageless bionanomaterial," Materials Today, vol 16, no 6, pp 220-227, 2013 [55] A Jozala et al., "Bacterial nanocellulose production and application: a 10-year overview," Applied Microbiology and Biotechnology, vol 100, 2016 [56] L Tang et al., "Ultrasonication-assisted manufacture of cellulose nanocrystals esterified with acetic acid," vol 127, pp 100-105, 2013 [57] H.-M Ng et al., "Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers," Composites Part B: Engineering, vol 75, pp 176-200, 2015 [58] J Tang et al., "Functionalization of cellulose nanocrystals for advanced applications," Journal of Colloid and Interface Science, vol 494, pp 397-409, 2017 [59] H Angellier et al., "Starch nanocrystal fillers in an acrylic polymer matrix," in Macromolecular Symposia, 2005, vol 221, no 1, pp 95-104: Wiley Online Library [60] S Beck-Candanedo et al., "Effect of Reaction Conditions on the Properties and Behavior of Wood Cellulose Nanocrystal Suspensions," Biomacromolecules, vol 6, no 2, pp 1048-1054, 2005 [61] K Dhali et al., "A review of nanocellulose as a new material towards environmental sustainability," Science of The Total Environment, vol 775, p 145871, 2021 [62] B Wang et al., "Study of Structural Morphology of Hemp Fiber from the Micro to the Nanoscale," Applied Composite Materials, vol 14, no 2, p 89, 2007 [63] Y.-P Chen et al., "Computing an expected hitting time for the 3-urn Ehrenfest model via electric networks," Statistics & Probability Letters, vol 127, pp 4248, 2017 [64] G Zhu et al., "Surface chemistry of nanocellulose," in Nanocellulose, J Huang, Ed New York: Wiley, 2019, pp 115-153 88 [65] M Börjesson et al., "Crystalline Nanocellulose Ắ Preparation, Modification, and Properties," in Cellulose - Fundamental Aspects and Current Trends, M Poletto, Ed London: IntechOpen, 2015 pp 159-191 [66] H A Khalil et al., "Production and modification of nanofibrillated cellulose using various mechanical processes: a review," Carbohydrate Polymers, vol 99, pp 649-665, 2014 [67] M Keerati-U-Rai et al., "Effect of dynamic high pressure homogenization on the aggregation state of soy protein," Environ Sci Pollut Res Int, vol 57, no 9, pp 3556-3562, 2009 [68] M Jonoobi et al., "Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion," Composites Science and Technology, vol 70, no 12, pp 1742-1747, 2010 [69] C Liu et al., "Preparation of sugarcane bagasse cellulosic phthalate using an ionic liquid as reaction medium," Carbohydrate Polymers, vol 68, no 1, pp 17-25, 2007 [70] A Kaushik et al., "Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization," Carbohydr Res, vol 346, no 1, pp 76-85, 2011 [71] F S Kano et al., "Variation of the milling conditions in the obtaining of nanocellulose from the paper sludge," Matéria (Rio de Janeiro), vol 24, no 3, 2019 [72] C M Ewulonu et al., "Ultrasound-assisted mild sulphuric acid ball milling preparation of lignocellulose nanofibers (LCNFs) from sunflower stalks (SFS)," Cellulose, vol 26, no 7, pp 4371-4389, 2019 [73] M Ghasemlou et al., "Surface modifications of nanocellulose: From synthesis to high-performance nanocomposites," Progress in Polymer Science, vol 119, p 101418, 2021 89 [74] M Moniruzzaman et al., "Separation and characterization of cellulose fibers from cypress wood treated with ionic liquid prior to laccase treatment," Bioresource Technology, vol 127, pp 132-137, 2013 [75] G Siqueira et al., "Cellulosic bionanocomposites: a review of preparation, properties and applications," Polymers, vol 2, no 4, pp 728-765, 2010 [76] B Wang et al., "Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers," Composites Science and Technology, vol 67, no 11-12, pp 2521-2527, 2007 [77] E Robles et al., "Surface-modified nano-cellulose as reinforcement in poly (lactic acid) to conform new composites," Industrial Crops and Products, vol 71, pp 44-53, 2015 [78] A J M t Dufresne, "Nanocellulose: a new ageless bionanomaterial," Materials Today, vol 16, no 6, pp 220-227, 2013 [79] K Liu et al., "Bio-inspired superoleophobic and smart materials: design, fabrication, and application," Progress in Materials Science, vol 58, no 4, pp 503-564, 2013 [80] Y J C S R Habibi, "Key advances in the chemical modification of nanocelluloses," Chemical Society reviews, vol 43, no 5, pp 1519-1542, 2014 [81] P Phanthong et al., "Amphiphobic nanocellulose-modified paper: fabrication and evaluation," RSC Adv., vol 6, no 16, pp 13328-13334, 2016 [82] M Nogi et al., "Optically transparent nanofiber paper," Advanced Materials, vol 21, no 16, pp 1595-1598, 2009 [83] M E Badawy et al., "Synthesis and antifungal property of N-(aryl) and quaternary N-(aryl) chitosan derivatives against Botrytis cinerea," Cellulose, vol 21, no 4, pp 3121-3137, 2014 [84] I Arvanitoyannis et al., "Physico-chemical studies of chitosan-poly (vinyl alcohol) blends plasticized with sorbitol and sucrose," Carbohydrate Polymers, vol 34, no 1-2, pp 9-19, 1997 90 [85] D S Cha et al., "Biopolymer-based antimicrobial packaging: a review," Critical reviews in food science and nutrition, vol 44, no 4, pp 223-237, 2004 [86] H Tian et al., "Dynamic mechanical property and photochemical stability of perlite/PVA and OMMT/PVA nanocomposites," Journal of Materials Science J MATER SCI, vol 43, no 2, pp 766-770, 2008 [87] V Sedla ík et al., "Characterization of polymeric biocomposite based on poly (vinyl alcohol) and poly (vinyl pyrrolidone)," Polymer Composites, vol 27, no 2, pp 147-152, 2006 [88] Z E Lim et al., "Functionalized pineapple aerogels for ethylene gas adsorption and nickel (II) ion removal applications," Journal of Environmental Chemical Engineering, vol 8, no 6, p 104524, 2020 [89] S A Md Farid Hossain, Mustafa Anwar,, "Nutritional Value and Medicinal Benefits of Pineapple," International Journal of Nutrition and Food Sciences, vol Vol 4, pp pp 84-88, 2015 [90] "Báo cáo ngành tr ng tr t t i Vi t Nam n m 2017", Institute for Brand and Competitiveness Strategy - Vietnam business monitor, 2017 [91] N W de Santos RM et al., "Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste," Indus Crop Prod, vol 50, pp 707714, 2013 [92] P Kumar et al., "Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production," Ind Eng Chem Res., vol 48, pp 3713-3729, 2009 [93] Y Yusof et al., "Novel Technology for Sustainable Pineapple Leaf Fibers Productions," Procedia CIRP, vol 26, pp 756-760, 2015 [94] Y Yusof et al., "Novel Technology for Sustainable Pineapple Leaf Fibers Productions," Procedia CIRP, vol 26, pp 756-760, 2015 [95] G Zhu et al., "Surface chemistry of nanocellulose," in Nanocellulose, J Huang, Ed New York: Wiley, 2019, pp 115-153 91 [96] K Plermjai et al., "Extraction and characterization of nanocellulose from sugarcane bagasse by ball-milling-assisted acid hydrolysis," in AIP Conference Proceedings, 2018, pp 020005 [97] Y Alqaheem et al., "Microscopy and Spectroscopy Techniques for Characterization of Polymeric Membranes," Membranes, vol 10, no 2, 2020 [98] N S Khattak et al., "Thermal and Rheological Study of Nanocomposites, Reinforced with Bi-Phase Ceramic Nanoparticles %J Zeitschrift für Physikalische Chemie," Zeitschrift für Physikalische Chemie, vol 233, no 9, pp 1233-1246, 2019 [99] J Köchermann et al., "Kinetics of Hydrothermal Furfural Production from Organosolv Hemicellulose and d-Xylose," Industrial & Engineering Chemistry Research, vol 57, no 43, pp 14417-14427, 2018 [100] J Lamaming et al., "Characterization of Cellulose Microfibers Isolated from Rubberwood (Hevea brasiliensis)," International Journal on Advanced Science, Engineering and Information Technology, vol 6, p 171, 2016 [101] R Santos et al., "Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste," Industrial Crops and Products, vol 50, pp 707714, 2013 [102] D Ciftci et al., "Cellulose Fiber Isolation and Characterization from Sweet Blue Lupin Hull and Canola Straw," Journal of Polymers and the Environment, vol 26, 2018 [103] Y Wu et al., "Effect of H(2)O(2) Bleaching Treatment on the Properties of Finished Transparent Wood," (in eng), Polymers, vol 11, no 5, p 776, 2019 [104] M Mahardika et al., "Production of Nanocellulose from Pineapple Leaf Fibers via High-Shear Homogenization and Ultrasonication," Fibers, vol 6, no 2, p 28, 2018 [105] P Alvira et al., "Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review," Bioresour Technol, vol 101, no 13, pp 4851-61, 2010 92 [106] Q B Thai et al., "Cellulose-based aerogels from sugarcane bagasse for oil spillcleaning and heat insulation applications," Carbohydrate Polymers, vol 228, p 115365, 2019 [107] H Xie et al., "Recent Strategies in Preparation of Cellulose Nanocrystals and Cellulose Nanofibrils Derived from Raw Cellulose Materials," International Journal of Polymer Science, vol 2018, p 7923068, 2018 [108] Kusmono et al., "Preparation and characterization of cellulose nanocrystal extracted from ramie fibers by sulfuric acid hydrolysis," (in eng), Heliyon, vol 6, no 11, pp e05486-e05486, 2020 [109] F Fahma et al., "Effect of pre-acid-hydrolysis treatment on morphology and properties of cellulose nanowhiskers from coconut husk," Cellulose, vol 18, pp 443-450, 2011 [110] T I Shaheen et al., "Sono-chemical synthesis of cellulose nanocrystals from wood sawdust using Acid hydrolysis," International Journal of Biological Macromolecules, vol 107, pp 1599-1606, 2018 [111] A Mandal et al., "Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization," Carbohydrate Polymers, vol 86, pp 1291-1299, 2011 [112] A N Vu et al., "Isolation of cellulose nanocrystals from rice husk using the formic/peroxyformic acid process," Science and Technology Development Journal - Natural Sciences, vol 4, no 2, pp 430-440, 2020 [113] B M Cherian et al., "Isolation of nanocellulose from pineapple leaf fibres by steam explosion," Carbohydrate Polymers, vol 81, no 3, pp 720-725, 2010 [114] M G Aguayo et al., "Isolation and Characterization of Cellulose Nanocrystals from Rejected Fibers Originated in the Kraft Pulping Process," Polymers, vol 10, no 10, p 1145, 2018 [115] G Lima et al., "Effect of adsorption of polyethylene glycol (PEG), in aqueous media, to improve cellulose nanostructures stability," Journal of Molecular Liquids, vol 268, 2018 93 PH L C  nh SEM  th TGA th TGA c a d a tách s i 94 th TGA c a d a tách s i th TGA c a Cellulose 95 Gi n đ XRD c a NC  Gi năđ XRD Gi n đ XRD c a d a thô 96 Gi n đ XRD c a d a tách s i Gi n đ XRD c a Cellulose 97 Gi n đ XRD c a NC 98 LÝ L CH TRÍCH NGANG H tên: Nguy n Th Xuân Chi NgƠy, tháng, n m sinhμ 28/03/1λλ5 a ch liên l c: 54 N i sinhμ V nh Long ng D4A, KDC Sài Gòn Ch L n, Ph ng 7, Qu n 8, Tp.HCM QUỄăTRỊNHă ẨOăT O  T 2014-2019: sinh viên Tr ng i h c C n Th Chun ngành: Cơng ngh K thu t Hóa h c  T 2020-2022: h c viên tr ng i h c Bách Khoa - HQG Tp.HCM Chuyên ngành: K thu t Hóa h c Q TRÌNH CƠNG TÁC  T 04/2019-05/2020: Nhân viên R&D t i công ty TNHH S n xu t vƠ Th ng m i T ng h p Vi t My  T 11/2020-05/2022: Nghiên c u viên t i Trung tâm Nghiên c u Cơng ngh L c hóa d u 99 ... 1.1.2 Phân lo i T ng quan nanocellulose 1.2.1 S l 1.2.2 Phân lo i nanocellulose 1.2.3 c tính nanocellulose c nanocellulose 1.2.4 Ph ng pháp... m u nanocellulose 72 Hình 3.23 Hình nh TEM m u nanocellulose 72 Hình 3.24 Ph FTIR Cellulose nanocellulose (NC) 73 Hình 3.25 Gi n đ nhi u x tia X c a m u Cellulose nanocellulose. .. diffraction Nhi u x tia X CNF Cellulose Nanofibers S i Nanocellulose CNC Cellulose Nanocrystals Tinh th Nanocellulose NC Nanocellulose Nanocellulose PL Pineapple leaf Lá d a thô PF Pineapple

Ngày đăng: 13/10/2022, 08:24

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w