1. Trang chủ
  2. » Giáo Dục - Đào Tạo

(LUẬN văn THẠC sĩ) miền ổn định của hệ động lực liên tục​

71 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 71
Dung lượng 0,95 MB

Nội dung

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN ——————–o0o——————– PHẠM HỒNG QUÂN MIỀN ỔN ĐỊNH CỦA HỆ ĐỘNG LỰC LIÊN TỤC LUẬN VĂN THẠC SĨ TOÁN HỌC Hà Nội - 2020 download by : skknchat@gmail.com ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN ——————–o0o——————– PHẠM HỒNG QUÂN MIỀN ỔN ĐỊNH CỦA HỆ ĐỘNG LỰC LIÊN TỤC Chuyên ngành: Toán ứng dụng Mã số: 84 60112 01 LUẬN VĂN THẠC SĨ TỐN HỌC Người hướng dẫn: PGS TSKH Vũ Hồng Linh Chủ tịch hội đồng: GS TS Nguyễn Hữu Dư Hà Nội - 2020 download by : skknchat@gmail.com Mục lục Lời cảm ơn iii Danh sách hình vẽ iv Mở đầu Chương Kiến thức chuẩn bị 1.1 Hệ động lực phi tuyến 1.2 Tính ổn định 1.3 Lý thuyết hàm Lyapunov 12 1.4 Lý thuyết hàm lượng 15 1.4.1 Hàm lượng 15 1.4.2 Hàm lượng cho hệ động lực cấp hai 18 Chương Miền ổn định tựa ổn định hệ động lực liên tục 23 2.1 Điểm cân biên ổn định 23 2.2 Đặc trưng biên ổn định 31 2.3 Miền tựa ổn định đặc trưng biên tựa ổn định 35 2.4 Thuật toán xác định biên ổn định 39 Chương Ước lượng miền ổn định hệ động lực liên tục 3.1 46 Tập mức đặc trưng điểm cân không ổn định gần 46 3.2 Miền tựa ổn định hàm lượng 50 3.3 Ước lượng miền ổn định theo hàm lượng địa phương 52 i download by : skknchat@gmail.com Kết luận 62 Tài liệu tham khảo 62 ii download by : skknchat@gmail.com Lời cảm ơn Luận văn thực Trường Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội hoàn thành hướng dẫn PGS TSKH Vũ Hồng Linh Tơi xin bày tỏ lịng biết ơn sâu sắc chân thành tới thầy giáo hướng dẫn khoa học mình, người đặt vấn đề nghiên cứu, dành nhiều tâm huyết, thời gian hướng dẫn tận tình giải đáp thắc mắc tơi suốt q trình làm luận văn Tơi xin trân trọng cảm ơn Ban Giám hiệu Trường Đại học Khoa học Tự nhiên, Lãnh đạo Khoa Toán - Cơ - Tin học, Bộ mơn Tốn học tính toán Toán ứng dụng, giảng viên tham gia giảng dạy, tạo điều kiện tốt để học tập nghiên cứu Đồng thời, xin gửi lời cảm ơn tới tập thể lớp cao học Tốn học (khóa 2018-2020), cảm ơn gia đình, bạn bè quan chủ quản động viên, giúp đỡ tơi nhiều q trình học tập Hà Nội, ngày 10 tháng 11 năm 2020 Học viên Phạm Hồng Quân iii download by : skknchat@gmail.com Danh sách hình vẽ 1.1 Minh họa định nghĩa ổn định Lyapunov 1.2 Minh họa định nghĩa ổn định tiệm cận 1.3 Mô tả đa tạp ổn định địa phương đa tạp không ổn định địa phương điểm cân 1.4 Quan hệ không gian ổn định không gian không ổn định với đa tạp ổn định đa tạp không ổn định điểm cân hyperbolic 1.5 Đa tạp ổn định không ổn định (0, 0); không gian riêng ổn định không ổn định tương ứng 1.6 12 Minh họa quan hệ hình cầu mở hình cầu đóng chứng minh Định lý 1.11 13 2.1 Giao đa tạp không ổn định x1 đa tạp ổn định 2.2 x2 khơng thỏa mãn điều kiện hồnh 29 Miền ổn định điểm cân ổn định (0, 0) Ví dụ 2.1 35 2.3 Minh họa khác miền ổn định miền tựa ổn định 38 2.4 Đường cong A B giới hạn miền ổn định xác định phương pháp khác Đường cong C biên ổn định thu phương pháp 42 2.5 Bức tranh pha hệ (2.3) biên ổn định 43 2.6 Bức tranh pha hệ động lực Ví dụ 2.3 Biên ổn định đường in đậm màu đỏ 3.1 3.2 45 Mối quan hệ mặt mức lượng S(r) giá trị mức khác miền ổn định A(xs ) 48 Cấu trúc mặt mức lượng tăng giá trị mức 51 iv download by : skknchat@gmail.com 3.3 Miền ổn định ước lượng theo mặt lượng 3.4 Bức tranh pha hệ Ví dụ 3.1 So sánh biên ước lượng biên ổn định định xác 3.5 55 56 Miền ổn định xác miền ổn định ước lượng Ví dụ 3.2 59 3.6 Miền ổn định ước lượng Ví dụ 3.3 60 3.7 Miền ổn định ước lượng biên ổn định xác Ví dụ 3.3 v download by : skknchat@gmail.com 61 Mở đầu Từ nhiều kỷ trước, việc nghiên cứu tính ổn định hệ động lực xem tốn khó hấp dẫn người, xuất nhiều lĩnh vực khác kinh tế, học, vật lý, kỹ thuật Cũng chủ đề rộng nên khái niệm độ ổn định hình thành theo nhiều cách khác tùy thuộc vào mục đích nghiên cứu tính ổn định Trong đó, chủ đề quan trọng liên quan chặt chẽ đến ổn định miền ổn định hệ động lực phi tuyến Trong thực tế, nhiều hệ thống vật lý kỹ thuật thiết kế để hoạt động trạng thái cân Nói cách khác, cấu tạo để vận hành điểm cân xung quanh điểm cân mơ tả q trình vận hành hệ động lực phi tuyến Yêu cầu quan trọng để vận hành thành công hệ thống trì ổn định trạng thái cân Tính ổn định địi hỏi chắn điểm cân nhiễu nhỏ tác động bên hệ thống gây Nói cách khác, trạng thái hệ thống dần điểm cân nhiễu nhỏ định Tuy nhiên, hầu hết hệ thống vật lý kỹ thuật khơng ổn định tồn cục Có thể hiểu hệ thống quay trở lại trạng thái cân kích thước có giới hạn nhiễu Mặc dù vấn đề quen thuộc toán đặt làm để tính miền ổn định xung quanh điểm cân hệ động lực cho trước Từ đó, cho phép hạn chế nhiễu nhỏ dao động bên miền ổn định tính tốn Cho đến nay, có số phương pháp dùng tính tốn xấp xỉ miền ổn định hệ động lực phi tuyến cho trước hầu hết phương pháp dựa hàm lượng hàm Lyapunov, [4], [5], [9], [12] Tuy nhiên, cách tiếp download by : skknchat@gmail.com cận không dựa hàm Lyapunov xem xét trình bày [5] Phương pháp cho phép tìm miền ổn định xác hệ động lực phi tuyến cho trước Một cách tiếp cận khác dựa phương pháp mặt mức ẩn tập mức nghiên cứu [7], [11] Trong luận văn này, trình bày “Miền ổn định hệ động lực liên tục” Cụ thể hơn, chúng tơi trình bày lý thuyết miền ổn định cách tìm miền ổn định phương pháp số Luận văn chia thành ba chương sau ❼ Chương 1: Kiến thức chuẩn bị Trong chương này, nhắc lại số khái niệm ổn định tính chất liên quan Ngồi ra, lý thuyết hàm lượng, hàm Lyapunov đề cập đến Các lý thuyết sử dụng để ước lượng miền ổn định hệ động lực phi tuyến có số chiều lớn ❼ Chương 2: Miền ổn định tựa ổn định hệ động lực liên tục Chương tập trung chủ yếu vào trình bày đặc trưng biên ổn định biên tựa ổn định hệ động lực Ở cuối chương, chúng tơi đưa thuật tốn để xác định biên ổn định cách hoàn chỉnh ❼ Chương 3: Ước tính miền ổn định hệ động lực liên tục Trong chương cuối, tập trung vào phương pháp ước lượng miền ổn định hệ động lực cho trước dựa hàm lượng tập mức Bên cạnh đó, số thử nghiệm số thực cho số hệ động lực phi tuyến tiên tục có số chiều thấp đưa Các tài liệu sử dụng luận văn bao gồm số sách báo tác giả Hsiao-Dong Chiang Luís Fernando Costa Alberto, [2], [4], [5], [12] Kết luận văn báo cáo seminar Bộ mơn Tốn học tính tốn Tốn ứng dụng, Khoa Tốn - Cơ - Tin học trình bày Hội thảo Một số toán chọn lọc phương trình vi phân điều khiển Viện Nghiên cứu cao cấp Toán tổ chức Tuần Châu, Quảng Ninh, ngày 05-07/11/2020 download by : skknchat@gmail.com Chương Kiến thức chuẩn bị Trong chương thứ này, chúng tơi nhắc lại định nghĩa tính chất tính ổn định hệ động lực Bên cạnh đó, lý thuyết hàm Lyapunov, hàm lượng hệ động lực ứng dụng trình bày mục cuối chương Đây kiến thức sở cho nội dung chương sau Phần lớn nội dung chương trình bày dựa tài liệu [1], [2], [4] [5] 1.1 Hệ động lực phi tuyến Trong chương này, xét hệ động lực phi tuyến (ô tô nôm) sau x˙ = f (x), (1.1) x ∈ Rn biến véctơ hàm f : Rn → Rn thỏa mãn điều kiện đảm bảo toán giá trị ban đầu (1.1) tồn nghiệm Trong luận văn này, giả thiết hàm f khả vi r lần đạo hàm liên tục Điều kiện đảm bảo với giá trị ban đầu x0 , tồn khoảng cực đại I = (w− , w+ ) ⊂ R, ∈ I tồn hàm khả vi liên tục x(t) : I → Rn nghiệm phương trình (1.1) cho x(0) = x0 Định lý 1.1 ([5]) Cho x(t) nghiệm phương trình (1.1) [0, w+ ] khoảng cực đại tồn nghiệm Khi đó, tồn tập compact download by : skknchat@gmail.com kỳ tập compact, bất biến dương chứa tập w-giới hạn theo Định lý 1.13-1.14, tập w-giới hạn hệ động lực (3.1) chứa điểm cân nên tập S phải chứa điểm cân Điều mâu thuẫn với giả thiết Như vậy, chứng minh kết thúc Nhận xét 3.1 Nếu điểm cực tiểu Định lý tồn biên ổn định khơng thể điểm nguồn Thông thường, điểm cân loại Định lý 3.4 (Đặc trưng động lực, [4]) Giả sử hệ động lực phi tuyến (3.1) tồn hàm lượng Giả thiết thêm xs điểm cân ổn định A(xs ) miền ổn định tương ứng hệ (3.1) Khi đó, miền ổn định A(xs ) không trù mật Rn hàm lượng đạt cực tiểu biên ổn định x ˆ W u (ˆ x) ∩ A(xs ) = ∅ Chứng minh Giả thiết phản chứng đa tạp không ổn định điểm cân x ˆ không hội tụ điểm cân ổn định xs Theo Định lý 2.1, ta có W u (ˆ x) ∩ A(xs ) = ∅ xˆ điểm hyperbolic Bây giờ, ta giả thiết tồn quỹ đạo nghiệm x(t) {W u (ˆ x) − xˆ} cho x(t) ∈ ∂A(xs ) lim x(t) = xˆ Vì hàm lượng đơn điệu giảm thực dọc theo quỹ đạo t→−∞ nghiệm không tầm thường nên suy tồn điểm khác biên cho hàm lượng đạt giá trị thấp giá trị V (ˆ x) Điều vơ lý x ˆ điểm đạt giá trị cực tiểu hàm lượng biên ∂A(xs ) Do đó, định lý chứng minh Nhận xét 3.2 Nếu x ˆ điểm cân ổn định gần {W s (ˆ x) − xˆ} ∩ ∂A(xs ) = ∅ Thật vậy, điểm cân ổn định gần nằm biên ổn định nên Nhận xét suy trực tiếp từ Định lý 2.1 3.2 Miền tựa ổn định hàm lượng Mục tập trung trình bày mối quan hệ cấu trúc biên tựa ổn định mặt mức lượng giá trị mức khác 50 download by : skknchat@gmail.com x1 x1 x5 xco x5 xco xs xs xcl x2 xcl x2 A(xs ) tăng giá trị mức A(xs ) tăng giá trị mức x1 x1 x5 xco x5 xco xs xs xcl x2 xcl x2 A(xs ) A(xs ) Hình 3.2: Cấu trúc mặt mức lượng tăng giá trị mức Mệnh đề 3.5 (Tính bị chặn, [4]) Giả sử hệ động lực phi tuyến liên tục mô tả (3.1) có hàm lượng V (x) Giả sử A, ∂A Aq theo thứ tự miền ổn định, biên ổn định miền tựa ổn định điểm cân ổn định xs Đặt c = V (x), x ∈ ∂A ∩ E , với E tập điểm cân (3.1) Khi đó, giá trị c đạt điểm cân x ˆ ∈ Aq với ε > đủ nhỏ, tập S(c + ε, xs ) chứa miền tựa ổn định, tức S(c + ε, xs ) ⊂ Aq Chứng minh Giả sử x ˆ điểm cân hyperbolic loại k Khi đó, tồn hệ tọa độ địa phương (x1 , , xk , y1 , , yn−k ) xác định lân cận U x ˆ cho V (x, y) = c − |x|2 − |y|2 hệ tọa độ Đặt 51 download by : skknchat@gmail.com ... lượng miền ổn định hệ động lực phi tuyến có số chiều lớn ❼ Chương 2: Miền ổn định tựa ổn định hệ động lực liên tục Chương tập trung chủ yếu vào trình bày đặc trưng biên ổn định biên tựa ổn định hệ. .. cho hệ động lực cấp hai 18 Chương Miền ổn định tựa ổn định hệ động lực liên tục 23 2.1 Điểm cân biên ổn định 23 2.2 Đặc trưng biên ổn định 31 2.3 Miền. .. chặn miền ổn định Hệ 2.12 Xét hệ động lực phi tuyến (2.1) với điểm cân ổn định xs có biên ổn định khác rỗng Nếu giả thiết (A1)-(A3) thỏa mãn biên ổn định ∂A(xs ) khơng chứa điểm nguồn miền ổn định

Ngày đăng: 09/04/2022, 20:32

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w