CÁCBÀITOÀNVỀĐƯỜNG THẲNG
(các bàitoán trong phần này đều trong mặt phẳng với hệ tọa độ Oxy)
1 . Đường phân giác của tam giác:
Bài 1 : Cho 3 điểm A(-6,-3);B(-4,3);C(9,2)
a) Viết phương trình đườngthẳng (d) chứa đường phân giác trong góc A của tam giác ABC
b) Tìm điểm P thuộc (d) sao cho ABPC là hình thang (ĐHSPHN1999)
Bài 2 : Tam giác ABC có A(2,-1). Phương trình cácđường phân giác trong kẻ từ B và C lần lượt
là
B
d
:
2 1 0x y− + =
;
: 3 0
C
d x y+ + =
, tìm phương trinh đườngthẳng chứa cạnh BC
(ĐHTM2000)
Bài 3 : Cho 3 đườngthẳng :
( )
( )
( )
( )
( )
( )
1 2 3
1 2 3
:3 4 6 0 ; : 4 3 1 0 ; : 0 .d x y d x y d y+ − = + − = =
Gọi
( ) ( ) ( ) ( ) ( ) ( )
1 2 2 3 3 1
; ;A d d B d d C d d= ∩ = ∩ = ∩
a) Viết phương trình phân giác trong góc A của tam giác ABC và tính diện tích tam giác đó
b) Viết phương trình đường tròn nội tiếp tam giác đó
2. đường cao và trực tâm tam giác
Bài 1: Phương trình hai cạnh của một tam giác là:
( ) ( )
1 2
5 2 6 0 và 4x+7y-21=0 .x y− + =
Viết phương trình cạnh thứ ba của tam giác biết trực tâm của nó trùng với O(0,0).
(ĐHBKHN1994)
Bài 2 : Lập phương trình các cạnh của một tam giác ABC biết C(-4,-5) và hai đường cao có
phương trình
( ) ( )
1 2
5 3 4 0 và 3x+8y+13=0x y+ − =
(ĐHGTVT1997)
3. Đường trung tuyến và trọng tâm tam giác
Bài 1:Lập phương trình các cạnh của một tam giác ABC biết A(1,3) và hai đường trung tuyến là :
( ) ( )
1 2
2 1 0 và 1 0x y y− + = − =
(ĐHMĐC1995)
Bài 2 : Tam giác ABC có trọng tâm G(2,-1) , cạnh AB nằm trên đườngthẳng
( )
1
4 1 0x y+ + =
,
cạnh AC nằm trên đườngthẳng
( )
2
2 5 3 0x y+ + =
a) Tìm tọa độ đỉnh A và trung điểm M của đoạn thẳng BC
b) Tìm tọa độ điểm B và viết phương trình đườngthẳng BC
Bài 3: Tam giác ABC có diện tích
3
2
S =
, hai đỉnh A(2,-3) B(3,-2) ,trọng tam G năm trên đường
thẳng
( )
1
3 8 0 .x y− − =
Tìm tọa độ đỉnh C .(Đề 86/Va)
4.Đường trung bình của tam giác
Bài1: Cho các điểm P(2;3) , Q(4;-1) , R(-3;5) là trung điểm các cạnh của tam giác .Lập
Phương trình cácdườngthẳng chứa các cạnh của tam giac đó .
Bài2: Tam giác ABC có cácđường trung bình nằm trên cácđườngthẳng có phương trình
( ) ( ) ( )
1 2 3
2 1 0 ; 4 13 0 ; 2 1 0 ,x y x y x y− + = + − = − − =
Viết phương trình cácđườngthẳng chứa
các cạnh của tam giác đó .
Bài3 :Tam giác ABC có 2 đường trung bình kẻ từ trung điểm M của BA nằm trên cácđường
thẳng có phương trình
( ) ( )
1 2
4 7 0 ;3 2 9 0x y x y− + = − − =
và tọa độ điểm B(7;1).Viết phương
trình cácđườngthẳng chứa các cạnh của tam giác đó .Tính diện tích tam giác ABC khi C có
tung độ âm.
5. Đường trung trực của tam giác
Bai1 : Tam giác ABC có đỉnh A(-1;-3) , đường trung trực của cạnh AB là
( )
1
3 2 4 0x y+ − =
và
trọng tâm G(4;-2).Tìm tọa độ các đỉnh B,C (ĐHCT 1998)
Bài2: Viết phương trình cácđường trung trực của tam giác ABC biết trung điểm của các cạnh
là M(-1;-1) , N(1;9) , P(9;1) (Đề 14/Va)
6.Kết hợp giữa cácđường đặc biệt của tam giác
Bài1: Lập phương trình các cạnh của một tam giác MNP biết N(2;-1) , đường cao hạ từ M là
( )
1
3 4 27 0 ,x y− + =
đường phân giác trong kể từ P là
( )
2
2 5 0x y+ − =
(ĐHHH 1995)
Bài2 : Lập phương trình các cạnh của tam giác ABC biết C(4;-1) , đường cao và trung tuyến hạ
từ một đỉnh có phương trình tương ứng là
( ) ( )
1 2
2 3 12 0 và 2x+3y=0x y− + =
Bài3 : Lập phương trình các cạnh của tam giác ABC biết C(4;3) ,đường phân giác trong và
đường trung tuyến kẻ từ một đỉnh lần lượt có phương trình
( ) ( )
1 2
2 5 0 và 4x+13y-10=0x y+ − =
.(ĐHHH 2001)
Bài4 : Cho M(3;0) và hai đườngthẳng
( ) ( )
1 2
: 2 2 0, à : 3 0.d x y v d x y− − = + + =
Viết phương trình đườngthẳng (d) qua M và cắt
( )
1
d
tại A , cắt
( )
2
d
tại B sao cho MA =MB
Bài5: Cho M(-1;2)và hai đường thẳng
( ) ( )
1 2
: 2 1 0; : 2 2 0d x y d x y+ + = + + =
.Viết phương
trình đườngthẳng (d) qua M và cắt
( )
1
d
tại A , cắt
( )
2
d
tại B sao cho MA = 2MB
Bài 6: Lập phương trình cácđườngthẳng chứa các cạnh cuả tam giác ABC biết A(-1;3) ,đường
cao hạ từ B là
( )
1
2 0x y− + =
, đường trung tuyến kẻ từ C là
( )
2
2 0x y+ =
II. CÁC BÀITOÁNVỀ ĐA GIÁC PHẲNG
(Các bàitoán trong phần này đều cho trong mặt phẳng với hệ tọa độ Oxy)
1. Tam giác :
Bài1 Cho tam giác ABC có M(-2;2) là trung điểm cạnh BC .phương trình cạnh AB là
( )
1
2 2 0x y− − =
.Cạnh AC là
( )
2
2 5 3 0x y+ + =
.Tìm tọa độ các đỉnh
Bài2 : Cho tam giác ABC có AB = AC ,
90BAC∠ =
o
biết M(1;-1) là trung điểm của BC và
2
;0
3
G
÷
là trọng tâm tam giác ABC . Tìm tọa độ các đỉnh
Bài3 : Cho hai đườngthẳng
( ) ( )
1 2
: 2 1 0 và : 2 7 0d x y d x y− + = + − =
.Lập phương trình
đường thẳng (d) đi qua gốc tọa độ và tạo với
( ) ( )
1 2
và d d
tam giác cân có đỉnh là giao điểm A
của
( ) ( )
1 2
và d d
.Tính diện tích tam giác đó
Bài4 : Cho A(-1;3) ,B(1;1) đường thẳng
( )
: 2d y x=
a)Tìm C thuộc (d) để tam giác ABC cân
b) Tìm C thuộc (d) để tam giác ABC đều
Bài 5 Tìm điểm C trên đường tròn (Q):
( ) ( )
2 2
1 2 13x y+ + − =
sao cho tam giác ABC vuông
và nội tiếp đường tròn (Q) biết A,B là giao điểm của (Q) với đườngthẳng
( )
: 5 2 0 d x y− − =
Bài6: Xét tam giác ABC vuông tại A , phương trình đườngthẳng BC là
3 3 0x y− − =
Các đỉnhA,B thuộc trục hoành và bán kính đường tròn nội tiếp bằng 2.tìm tọa độ trọng tâm G của
tam giác đó.(A.2004)
2.Tứ giác
Bài1; Cho hình bình hành ABCD biết P(0;3)
∈
AB ; Q(6;6)
∈
BC ,R(5;9)
∈
CD ,S(5;4)
∈
AD và
hai đường chéo AC , BD cắt nhau tại I(1;6). Viết phương trình các cạnh của hình bình hành .
Bài2 : Cho 4 điểm A(2;1) ; B(0;1) ; C(3;5) ; D(-3;-1) . tính diện tích tứ giác ADBC
Bài3 Lập phương trình các cạnh của hình vuông có đỉnh A(-4;5) và một đường chéo có phương
trình
( )
1
7 8 0x y− + =
Bài4 :Cho A(0;0) , B(2;4) , C(6;0) . Xác định tọa độ các điểm M,N,P,Q sao cho M,Nlần lượt nằm
trên các đoạn AB,BC, P,Q nằm trong đoạn AC và MNPQ là một hình vuông.
Bài5: Viết phương trình các cạnh của một hình vuông ABCD biết AB,CD lần lượt đi qua P(2;1)
Q(3;5) còn BC và AD lần lượt đi qua R(0;1) và S(-3;-1) (CBGLT.T3.T269)
Bài6 : Tìm tọa độ các đỉnh của một hình vuông ABCD biết tọa độ đỉnh A(1;1) và M (4;2) là trung
điểm cạnh BC.
Bài7: Cho các đỉnh của tam giác A(0;1) , B(-2;5) C(4;9) Lập phương trình các cạnh của hình thoi
nội tiếp trong tam giác nếu một đỉnh của nó là điểm A , các cạnh qua A nắm trên AC , AB , đỉnh
đối diện nằm trên BC.
Bài8 : Trong mặt phẳng với hệ Oxy, cho tam giác ABC có A(1;6) , B(8;3) , C(1;-4) , MNPQ là
hình chữ nhật có tâm là B , hai điểm M,N nằm trên đường cao AH của
V
ABC (M có tung độ
dương ) và có 2MN = NP . Tìm tọa độ các điểm M,N,P,Q.
. CÁC BÀI TOÀN VỀ ĐƯỜNG THẲNG
(các bài toán trong phần này đều trong mặt phẳng với hệ tọa độ Oxy)
1 . Đường phân giác của tam giác:
Bài 1 : Cho. điểm các cạnh của tam giác .Lập
Phương trình các dường thẳng chứa các cạnh của tam giac đó .
Bài2 : Tam giác ABC có các đường trung bình nằm trên các đường