Đường trễ sắt điện

Một phần của tài liệu Nghiên cứu chế tạo và các tính chất vật lý của hệ gốm đa thành phần trên cơ sở PZT và các vật liệu sắt điện chuyển pha nhòe (Trang 30 - 34)

CHƯƠNG 1: TỔNG QUAN LÝ THUYẾT VỀ CÁC VẤN ĐỀ NGHIÊN CỨU

1.2. Đặc trưng sắt điện thông thường

1.2.3. Đường trễ sắt điện

Đặc điểm nổi bật nhất của các chất sắt điện là tính chất phi tuyến trong mối quan hệ giữa phân cực P và điện trường áp đặt E (đường trễ). Phương pháp đơn giản nhất để xác định phân cực tự phát là phương pháp Sawyer – Tower. Dạng đường trễ sắt điện được biểu diễn trên Hình 1.5.

Khi điện trường ngoài nhỏ, phân cực tăng tuyến tính theo điện trường.

Giai đoạn này chủ yếu là do sự phân cực cảm ứng theo hướng tác dụng của Hình 1.4. Sự phụ thuộc của hằng số điện môi vào nhiệt độ của gốm sắt điện [18]

Nhiệt độ T (oC)

Pha thuận điện lập phương Pha sắt điện tứ

giác

Hằng sốđiện môi, 

13

điện trường (đoạn OA). Ở điện trường cao hơn, phân cực bắt đầu tăng phi tuyến khi điện trường tăng, do điện trường đã đủ mạnh để làm các đômen quay (đoạn AB). Nếu tiếp tục tăng điện trường ngoài, phân cực sẽ đạt trạng thái bão hòa tương ứng với đoạn (BC), lúc này hầu hết các đômen đã sắp xếp thẳng hàng theo hướng của điện trường phân cực. Sau đó, nếu giảm dần điện trường ngoài về không, phân cực cũng sẽ giảm theo (đoạn CBD). Bằng cách ngoại suy tuyến tính đến trục phân cực tại điểm E, thì độ dài đoạn OE ứng với phân cực tự phát, Ps, và độ dài đoạn OD ứng với phân cực dư, Pr. Độ dài đoạn thẳng từ Ps đến Pp trên trục phân cực tương ứng với độ cảm điện trường thông thường của phân cực điện môi. Pr luôn nhỏ hơn Ps bởi vì khi điện trường giảm đến không, một số đômen có thể hồi phục lại các vị trí ban đầu của chúng, vì vậy cần loại bỏ sự đóng góp của các đômen này vào phân cực toàn phần. Đối với hầu hết các vật liệu sắt điện, thành phần cảm ứng điện trường thông thường của phân cực điện môi là rất nhỏ so với phân cực tự phát, vì vậy trong các ứng dụng, thành phần này có thể bỏ qua.

Điện trường cần thiết để triệt tiêu hoàn toàn phân cực trong vật liệu sắt điện gọi là trường kháng, EC, ứng với đoạn OR trên trục điện trường. Trường

Hình 1.5. Giản đồ của một đường trễ sắt điện điển hình [81]

Điện trường kháng, Ec

Độ phân cực, P

E

14

kháng EC không chỉ phụ thuộc vào nhiệt độ mà còn phụ thuộc vào tần số đo và dạng sóng của điện trường áp đặt. Khi điện trường đảo ngược chiều và giảm đến không thì phân cực cũng bị đảo chiều theo. Điều này cho thấy, các đômen đã được hình thành trước khi phân cực và sự dịch chuyển các vách đômen dẫn đến sự thay đổi phương của phân cực. Sự trễ có nguồn gốc từ năng lượng cần thiết để đảo chiều các lưỡng cực không ổn định trong mỗi chu trình áp đặt điện trường. Diện tích của đường trễ biểu thị năng lượng phân tán bên trong mẫu vật liệu dưới dạng nhiệt trong suốt mỗi chu trình. Thông thường, đường trễ sắt điện được đo với điện trường xoay chiều có tần số thấp, khoảng 60 Hz hoặc nhỏ hơn, nhằm tránh sự hình thành nhiệt trong mẫu.

Tính chất sắt điện trong vật liệu đa tinh thể (các gốm sắt điện) khó chứng minh hơn so với trong vật liệu đơn tinh thể, do sự phân bố ngẫu nhiên của các tinh thể trong vật liệu. Điều này lý giải tại sao trong một số vật liệu đơn tinh thể, phân cực đảo chiều khá đột ngột dẫn đến đường trễ sắt điện có dạng hình vuông, trong khi đó, hầu hết các gốm sắt điện đều có đường trễ dạng bầu tròn do sự phản ứng chậm của các lưỡng cực quay theo chiều điện trường, mà nguyên nhân là từ việc sắp xếp ngẫu nhiên của các trục ô mạng trong các tinh thể không đồng nhất.

Vật liệu sắt điện chỉ thể hiện các tính chất sắt điện ở vùng nhiệt độ bên dưới TC do chúng là tinh thể có cực; ở trên nhiệt độ TC, chúng là tinh thể khụng cú cực. Rừ ràng, hỡnh dạng của đường trễ sắt điện phụ thuộc vào nhiệt độ.

Kích thước của các ô mạng cơ sở và lực liên kết các ion trong mạng tinh thể của vật liệu phụ thuộc mạnh vào nhiệt độ. Khi nhiệt độ thay đổi, tồn tại một nhiệt độ xác định (gọi là nhiệt độ chuyển pha) mà tại đó, cấu trúc của tinh thể trở nên không ổn định và có xu hướng chuyển sang một cấu trúc khác

15

bền vững hơn. Mặc dù sự chuyển pha chỉ kéo theo một sự dịch chuyển rất nhỏ của các ion, nhưng nó đã làm tính chất của vật liệu thay đổi đột biến. Sự thay đổi kích thước của các tinh thể hoặc mầm tinh thể sẽ tạo ra một ứng suất nội, đặc biệt tại các đường biên giữa các mầm tinh thể trong vật liệu đa tinh thể, chẳng hạn vật liệu gốm. Dưới các điều kiện nào đó, độ lớn của các ứng suất như vậy có thể đủ lớn để tạo ra các vết nứt bên trong vật liệu.

Sự chuyển đổi cấu trúc tinh thể thường kéo theo sự thay đổi cả entropy và thể tích. Thông thường, có hai loại trật tự chuyển pha phụ thuộc vào sự thay đổi liên tục hay gián đoạn của phân cực tự phát từ giá trị không cho đến một giá trị hữu hạn nào đó. Chuyển pha trật tự loại một ứng với sự thay đổi của phân cực tự phát là gián đoạn, như trong các vật liệu BaTiO3 và KNbO3

(Hình 1.6(a-c)). Trong trường hợp này, entropy thay đổi tại nhiệt độ chuyển pha. Ngược lại, nếu sự thay đổi của phân cực tự phát là liên tục thì sự chuyển

Hình 1.6. Sơ đồ chứng minh sự ảnh hưởng của điện trường ngoài đến a) sự chuyển pha loại một; b) sự chuyển pha loại hai và sự dịch chuyển điểm chuyển pha khi nhiệt

độ tăng hoặc giảm c) TC dịch chuyển đến điểm nhiệt độ cao hơn đối với chuyển pha loại một và d) TC không dịch chuyển đối với chuyển pha loại hai [5], [81]

16

pha ứng với chuyển pha trật tự loại hai, như trong các vật liệu KH2PO4 và muối Rochelle (Hình 1.6(b-d)). Trong trường hợp này, entropy không thay đổi tại nhiệt độ chuyển pha.

Một phần của tài liệu Nghiên cứu chế tạo và các tính chất vật lý của hệ gốm đa thành phần trên cơ sở PZT và các vật liệu sắt điện chuyển pha nhòe (Trang 30 - 34)

Tải bản đầy đủ (PDF)

(149 trang)