Vật liệu PZT pha tạp phức

Một phần của tài liệu Nghiên cứu chế tạo và các tính chất vật lý của hệ gốm đa thành phần trên cơ sở PZT và các vật liệu sắt điện chuyển pha nhòe (Trang 45 - 49)

CHƯƠNG 1: TỔNG QUAN LÝ THUYẾT VỀ CÁC VẤN ĐỀ NGHIÊN CỨU

1.4. Tổng quan tình hình nghiên cứu gốm áp điện trên cơ sở PZT

1.4.2. Vật liệu PZT pha tạp phức

Ngoài việc pha từng tạp đơn chất vào PZT để biến tính vật liệu theo hướng cứng hóa hay mềm hóa như đã trình bày trên, người ta còn có thể làm biến tính vật liệu theo hướng chế tạo các dung dịch rắn nhiều thành phần trên cơ sở PZT (PZT – relaxor).

Trên thế giới, vật liệu PZT-relaxor được quan tâm nghiên cứu trong nhiều năm qua. Nhiều nghiên cứu về gốm áp điện 3 thành phần đều chung kết luận rằng các hợp chất PbZrO3-PbTiO3-Pb(Mn1/3Sb2/3)O3 (PZT-PMS) [5], [60], [80], [83]; PbZrO3-PbTiO3-Pb(Mn1/3Nb2/3)O3 (PZT-PMnN) [4] [52], [15], Pb(Zr,Ti)O3–Pb(Zn1/3Nb2/3)O3–Pb(Mg1/3Nb2/3)O3 (PZT–PZN–PMN) [13];

28

Pb(Zr,Ti)O3 – Pb(Zn1/3Nb2/3)O3 –Pb(Mn1/3Nb2/3)O3 (PZT–PZN–PMnN) [29], [34], [64], [84], [87] là các vật liệu áp điện có công suất lớn. Ngoài ra, các hệ vật liệu đa thành phần trên còn có thể biến tính chúng bằng cách pha tạp. Từ công trình của Mao và cộng sự (2010) [60] cho thấy khi pha Fe2O3 vào gốm PMnS-PZN-PZT, hệ số phẩm chất cơ học Qm và tổn hao điện môi tan đã được cải thiện đáng kể: Qm tăng từ 470 lên 745 và tan giảm từ 0,32 % xuống 0,12 %. Mật độ của hệ gốm Pb0.95 Bi0.03Nb0.02Zr0,51Ti0,49-xFexO3 cũng được đã được nâng lên (trên 97 % giá trị lý thuyết) khi sử dụng 6 % mol Fe2O3, các tính chất áp điện cao (d33 = 530 pm/V) và hệ số liên kết điện cơ kp lớn (0,638) [60].

Ngoài ra tạp Fe2O3 góp phần cải thiện các tính chất điện môi, áp điện khi pha vào các hệ gốm trên cơ sở PZT nhờ hiệu ứng gia tăng kích thước hạt. Năm 2013, Du và các cộng sự [21] đã nghiên cứu ảnh hưởng của Fe2O3 đến các tính chất điện môi, sắt điện và áp điện của hệ gốm 0,55Pb(Ni1/3Nb2/3)O3 – 0,45Pb(Zr0,3Ti0,7)O3. Kết quả của nghiên cứu này cho thấy mật độ và kích thước hạt của gốm gia tăng theo nồng độ Fe2O3 tăng. Các tính chất điện môi, áp điện và sắt điện của gốm 0,55Pb(Ni1/3Nb2/3)O3–0,45Pb(Zr0,3Ti0,7)O3 đều tăng lên đáng kể so với mẫu không pha tạp Fe2O3.Tại nồng độ 1,2 % kl Fe2O3

các tính chất điện môi, áp điện và sắt điện của gốm đạt giá trị lớn nhất (εr = 6095; d33 = 956 pC/N; kp = 0,74; Pr = 26,9 μC/cm2). Kết quả này cũng tương tự như nghiên cứu của Zhu [91] trên hệ vật liệu PZT-PZN.

Ngoài tác dụng cải thiện các tính chất điện môi, áp điện và sắt điện, một số tạp (CuO, ZnO, Li2CO3...) còn có khả năng giảm nhiệt độ thiêu kết của gốm trên cơ sở PZT. Năm 2010, nhóm tác giả Yoon S.J. và cộng sự [89] đã nghiên cứu ảnh hưởng của CuO, Bi2O3 và Nb2O5 đến nhiệt độ thiêu kết và tính chất áp điện của hệ gốm 0.90Pb(Zr0,48Ti0,52)O3 – 0,05Pb(Mn1/3Sb2/3)O3 - 0,05Pb(Zn1/3Nb2/3)O3. Kết quả nghiên cứu cho thấy rằng khi pha 0,75%kl Bi2O3

vào hệ 0,90PZT – 0,05PMS – 0,05PZN + 1,0 %kl CuO gốm thu được có tính

29

chất điện tốt: d33 = 363pC/N, Qm = 851, kp = 0,59, tanδ = 0.38%, và ε = 1596.

Năm 2011, nhóm tác giả Nam C. H. và cộng sự [65] đã nghiên cứu ảnh hưởng của nồng độ CuO đến nhiệt độ thiêu kết và tính chất áp điện của hệ gốm 0,75Pb(Zr0,47Ti0,53)O3 – 0,25Pb(Zn1/3Nb2/3)O3 pha tạp MnO2. Kết quả cho thấy nhiệt độ thiêu kết của hệ 0,75Pb(Zr0,47Ti0,53)O3 – 0,25Pb(Zn1/3Nb2/3)O3 có chứa 1,5 %mol MnO2 giảm từ 930 oC đến 850 oC khi pha tạp CuO. Mẫu có chứa 0,5

%mol CuO thiêu kết ở 850 oC có các tính chất áp điện tốt (kp = 0,50, Qm = 1000, ε3 = 1750 và d33 = 300 pC / N).

Tại Việt Nam, năm 2007, lần đầu tiên hệ gốm sắt điện ba thành phần Pb(Zn1/3Nb2/3)O3 - PbZrO3 - PbTiO3 đã được chế tạo thành công bằng phương pháp gốm truyền thống [3]. Việc pha các nồng độ thích hợp PZN vào gốm PZT đó cải thiện rất rừ cỏc tớnh chất của gốm. Cỏc thụng số đặc trưng cho tớnh chất điện môi, áp điện, sắt điện tăng và đạt giá trị cao nhất tại 35% mol PZN:

 = 1660; max = 15000, kp = 0,60; d31 = 157.10-12 C/N; Pr = 24,48 C/cm2. Với các đặc điểm như hằng số điện môi  lớn, tổn hao điện môi tan lớn (>1%), điện trường kháng EC thấp, hệ số liên kết điện cơ kp lớn, hệ số phẩm chất Qm nhỏ (< 100) cho thấy vật liệu 0,65PZT-0,35PZN có các tính chất của vật liệu sắt điện mềm [3]. Tuy nhiên, đối với các ứng dụng trong chế tạo các biến tử siêu âm công suất cần phải có hệ số phẩm chất Qm cao và tổn hao điện môi tan thấp, đây là hạn chế của hệ vật liệu PZT-PZN.

Năm 2011, Nguyễn Đình Tùng Luận [5] đã chế tạo thành công hệ gốm bốn thành phần PZT-PSN-PMnN bằng phương pháp columbite. Kết quả cho thấy, hệ gốm nhiều thành phần có những tính chất nổi bật như: hệ số liên kết điện cơ cao (kp = 0,6), vận tốc dao động lớn, hệ số phẩm chất cao (Qm = 2017), tổn hao điện môi bé (tan = 0,003). Hệ vật liệu PZT-PSN-PMnN đã được tác giả ứng dụng để chế tạo biến thế áp điện [5]. Tuy nhiên, nhiệt độ thiêu kết của

30

hệ gốm PZT-PSN-PMnN rất cao (1200 oC) [57], [58], [59] là hạn chế của đề tài.

Mới đây, năm 2014, tác giả Thân Trọng Huy [4], đã chế tạo thành công hệ gốm PZT - PMnN bằng phương pháp columbite. Các thông số đặc trưng cho tính chất điện môi, áp điện, sắt điện và đạt giá trị tối ưu ưu tại 7% mol PMnN:  = 957; max = 10000, kp = 0,50, Qm = 3028, tan = 0,004. Với các đặc điểm như hằng số điện môi  nhỏ, tổn hao điện môi tan thấp, hệ số liên kết điện cơ kp nhỏ, hệ số phẩm chất Qm lớn cho thấy vật liệu PZT-PMnN có các tính chất của vật liệu sắt điện cứng [4]. Tuy nhiên, trong các lĩnh vực ứng dụng khác nhau của gốm áp điện, nhóm gốm áp điện công suất cao hiện đang được sử dụng trong việc chế tạo môtơ siêu âm, biến thế áp điện, thiết bị phun khí dung,… Để đạt được công suất cao, vật liệu phải có vận tốc dao động cơ  lớn bởi vì công suất lối ra P tỉ lệ với bình phương của . Mặt khác vận tốc dao động cơ phụ thuộc vào tích của hệ số liên kết điện cơ kp và hệ số phẩm chất cơ Qm nên vật liệu ứng dụng phải có kp và Qm lớn. Bên cạnh đó vật liệu phải có hằng số điện môi  cao và tổn hao điện môi tan nhỏ. Về nguyên tắc, vật liệu có Qm cao thuộc nhóm áp điện cứng; vật liệu có kp cao lại thuộc về nhóm áp điện mềm [5]. Do đó, cần phải nâng cao hệ số liên kết điện cơ kp và hằng số điện môi  của hệ vật liệu PZT-PMnN.

Như vậy, trên cơ sở thừa kế các kết quả nghiên cứu đã được xây dựng trong nhiều năm qua tại Bộ môn Vật lý Chất rắn, khoa Vật lý, trường Đại học Khoa học, Đại học Huế đặc biệt là hai hệ vật liệu PZT-PZN [3] (với tính chất mềm, kp cao) và PZT-PMnN [4] (với tính chất cứng Qm cao, tổn hao điện môi tan thấp). Chúng tôi hy vọng chế tạo hệ gốm áp điện bốn thành phần PZT- PZN-PMnN vừa có tính chất cơ tốt (Qm lớn), tính chất áp điện tốt (kp cao), hằng số điện môi cao và tổn hao điện môi bé, phù hợp với nhiều ứng dụng

31

trong lĩnh vực siêu âm công suất, biến thế áp điện, mô tơ siêu âm. Bên cạnh đó, cho đến giờ, chúng tôi chưa thấy công trình nào sử dụng Fe2O3 để pha vào hệ gốm PZT-PZN-PMnN. Trên cơ sở đó, trong nghiên cứu của chúng tôi, để tạo cho gốm vừa có tổn hao điện môi nhỏ, hệ số phẩm chất Qm lớn đồng thời vẫn có hệ số liên kết điện cơ cao, chúng tôi đã pha Fe2O3 vào PZT-PZN- PMnN (sẽ được trình bày trong chương 4).

Một phần của tài liệu Nghiên cứu chế tạo và các tính chất vật lý của hệ gốm đa thành phần trên cơ sở PZT và các vật liệu sắt điện chuyển pha nhòe (Trang 45 - 49)

Tải bản đầy đủ (PDF)

(149 trang)