Hình 2 .1 Lưu đồ giải thuật tối ưu DE
Hình 2.6 Hàm liên thuộc ngõ vào của mơ hình Fuzzy T-S dạng Gauss
Việc sử dụng 3 hàm liên thuộc cho ngõ vào để đơn giản hố tính tốn, đảm bảo tính phi tuyến vừa đủ với một mơ hình Fuzzy T-S. Đối với bài tốn phức tạp hơn, cấu trúc mơ hình Fuzzy T-S vẫn được giữ nguyên, chỉ cần tăng số lượng mơ hình Fuzzy T-S trong cấu trúc Fuzzy nhiều lớp.
2.5. KẾT LUẬN
Ở chương 2, nghiên cứu sinh đã đưa ra các cơ sở lý thuyết quan trọng sẽ được áp dụng trong quyển luận án. Tiếp theo, trong chương 3, nghiên cứu sinh trình bày về cách áp dụng mơ hình Fuzzy nhiều lớp trong nhận dạng hệ phi tuyến và giải thuật huấn luyện ghép tầng sử dụng huấn luyện mơ hình Fuzzy nhiều lớp. Và nội dung chương 4 sẽ nói về các bài toán điều khiển hệ phi tuyến.Equation Chapter (Next) Section 1
25
CHƯƠNG 3 NHẬN DẠNG HỆ PHI TUYẾN DÙNG MÔ HÌNH
FUZZY NHIỀU LỚP 3.1. GIỚI THIỆU
Chương 3 giới thiệu về kỹ thuật nhận dạng mơ hình áp dụng mơ hình Fuzzy nhiều lớp. Trong chương 3, kỹ thuật nhận dạng mô hình được áp dụng để nhận dạng mơ hình thuận, mơ hình các hệ bồn nước đơi liên kết và mơ hình cánh tay máy PAM song song. Đây là 2 mơ hình có tính trễ, phù hợp để kiểm chứng giải thuật nhận dạng trong luận án.
Tiếp theo đó, giải thuật nhận dạng ghép tầng được áp dụng để nhận dạng hệ bồn nước, kết quả mô phỏng và thực nghiệm cho thấy các ưu điểm của mơ hình mờ nhiều lớp trong nhận dạng và khả năng của giải thuật huấn luyện ghép tầng trong việc nhận dạng mơ hình mờ nhiều lớp đề xuất.
Kết quả của chương 3 còn được đăng trên các bài báo [1a], [5a], [6a], và [9a].
3.2. MƠ HÌNH HỆ BỒN NƯỚC ĐƠI LIÊN KẾT
Mơ hình bồn nước liên kết đơi là một dạng mơ hình MIMO phi tuyến có trễ với hai ngõ vào (điện áp điều khiển động cơ 1 và điện áp điều khiển động cơ 2) cùng hai hoặc bốn ngõ ra (mực nước các bồn 1, 2, 3, 4) (Hình 3.1). Trong mơ hình bồn nước đơi này, động cơ 1 điều khiển trực tiếp mực nước bồn 1, bồn thứ 2 bị tác động bởi ngõ ra của bồn 1. Động cơ thứ 2 điều khiển trực tiếp mực nước bồn 3 và bồn 4 bị tác động bởi ngõ ra bồn 3. Ngồi ra cịn có tác động chéo giữa động cơ 1 với bồn 4 và giữa động cơ 2 với bồn 3, làm tăng thêm tính phi tuyến cùng độ phức tạp cho mơ hình. Độ trễ của mơ hình thể hiện ở việc xác định đầu vào là 2 tín hiệu điện áp điều khiển bơm nước, đầu ra là 2 giá trị mực nước ở bồn 2 và bồn 4, khi có tín hiệu ngõ vào phải cần 1 khoảng thời gian thì đầu ra mới có tín hiệu tương ứng, khơng xem xét giá trị mực nước bồn 1 và bồn 3 làm đầu vào giải thuật, và còn thể hiện ở việc đáp ứng khi tăng, khi giảm khác nhau khiến cho mơ hình càng thêm phức tạp.
26
Hình 3.1. Cấu trúc mơ hình bồn nước liên kết đơi
Mơ hình bồn nước liên kết được xây dựng dựa trên mơ hình bồn nước đôi của Quanser [130] Cảm biến áp suất MPX10 của hãng Freescale để đo áp suất sau đó nội suy ra độ cao của mực nước trong bồn chứa. Động cơ 24V lưu lượng 10 lít/phút được sử dụng làm động cơ bơm 1 và động cơ bơm 2. Sơ đồ khối mơ hình bồn nước được thể hiện như Hình 3.1.
Phương trình phi truyến của bồn nước liên kết đôi được thể hiện qua hệ phương trình biến trạng thái (3.1) 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 2 2 3 3 3 3 4 4 4 1 1 4 4 4 2 ( ) 2 2 (1 ) ( ) 2 ( ) 2 2 (1 ) ( ) b C gx dx K u t dt A A b C gx b C gx dx K u t dt A A A b C gx dx K u t dt A A b C gx b C gx dx K u t dt A A A (2.1)
Trong đó u1, u2 lần lượt là điện áp điều khiên động cơ bơm 1, 2; x1, x2, x3, x4 lần lượt là mực nước ở các bồn 1, 2, 3 và 4.
27
Ý nghĩa các thông số và giá trị vật lý thể hiện ở Bảng 3.1. Các giá trị này sẽ được sử dụng ở mơ hình thực nghiệm.
Bảng 3.1. Ý nghĩa vật lý và thơng số mơ hình thực nghiệm.
Ký hiệu Ý nghĩa vật lý Giá trị [đơn vị]
A1 Đường kính trong của Bể 1 16.619(cm2) A2 Đường kính trong của Bể 2 16.619(cm2) A3 Đường kính trong của Bể 3 16.619(cm2) A4 Đường kính trong của Bể 4 16.619(cm2) b1 Đường kính ống thốt của Bể 1 0.5027(cm2) b2 Đường kính ống thốt của Bể 2 0.3318(cm2) b3 Đường kính ống thốt của Bể 3 0.5027(cm2) b4 Đường kính ống thốt của Bể 4 0.3318(cm2) C Hệ số dẫn lưu của ngõ ra 0.8 g Gia tốc trọng trường 981(cm/s2) K Hằng số bơm 6.94(cm3/(s.V))
1 Tỉ số dòng chảy Bể 1 với dòng chảy Bể 4 70(%)
2 Tỉ số dòng chảy Bể 2 với dòng chảy Bể 3 65(%)
3.2.1. Thu thập dữ liệu vào ra
Để nhận dạng hệ bồn nước ứng dụng mơ hình Fuzzy nhiều lớp, đầu tiên cần phải thu thập dữ liệu từ mơ hình thực. Dữ liệu được thu thập với thời gian lấy mẫu 0.1 giây. Dữ liệu dùng nhận dạng được thể hiện như ở Hình 3.2. Giá trị điện áp ngõ vào có giá trị từ 7.5V đến 15V, các giá trị ngõ vào thay đổi theo chu kỳ 10 giây. Dữ liệu bao gồm giá trị điện áp cấp cho động cơ bơm 1, động cơ bơm 2 và mực nước đo từ các bồn thứ 2 và bồn thứ 4. Dữ liệu từ cảm biến có nhiễu với phương sai lớn, khi áp dụng thực nghiệm, dữ liệu được qua một bộ lọc Kalman để lọc nhiễu.
Dữ liệu dùng đánh giá mơ hình thể hiện trên Hình 3.3. Đó là một tập dữ liệu khác tập dữ liệu dùng trong huấn luyện, giá trị ngẫu nhiên điện áp ngõ vào từ 7.5V đến 15V. Chương trình thu thập dữ liệu được viết trên ứng dụng Realtime Windows Target của phần mềm Matlab kết hợp vi điều khiển ARM 32-bit. Phần cứng mơ hình có thể tham khảo trong phụ lục A.
Thời gian lấy mẫu hệ bồn nước liên kết được chọn là 0.1 giây trong tồn bộ q trình lấy mẫu, điều khiển.
28
Hình 3.2. Dữ liệu huấn luyện mơ hình
29
3.2.2. Kết quả nhận dạng mơ hình thuận
Mơ hình Fuzzy nhiều lớp áp dụng nhận dạng mơ hình thuận bao gồm 2 mơ hình Fuzzy nhiều lớp MISO, mỗi khối mơ hình Fuzzy MISO bao gồm nhiều mơ hình Fuzzy T-S 2 ngõ vào 1 ngõ ra được huấn luyện bằng giải thuật tiến hóa vi sai tối ưu hàm mục tiêu bình phương sai số nhỏ nhất (Hình 3.4). Trong đó ngõ ra của mơ hình Fuzzy nhiều lớp MIMO ứng với giá trị mực nước tại 2 bồn ở vị trí thấp. Hai mơ hình Fuzzy T-S ở lớp vào thể hiện sự tương quan giữa ngõ vào đối với ngõ ra và sự tương quan giữa ngõ ra trong quá khứ đến ngõ ra hiện tại, mơ hình Fuzzy T-S ở lớp ẩn thể hiện sự tác động chéo giữa đầu vào, đầu ra trong quá khứ đến ngõ ra hiện tại. Ngõ vào mơ hình Fuzzy nhiều lớp gồm các giá trị điện áp và giá trị mực nước trước đó theo mơ hình hồi tiếp NARX. Hàm mục tiêu được chọn theo tiêu chí trung bình bình phương sai số giữa ngõ ra thực tế và ngõ ra của mơ hình Fuzzy.
Hình 3.4. Mơ hình Fuzzy trong nhận dạng hệ bồn nước
Giải thuật DE được áp dụng với các thông số sau: 200 cá thể trong quần thể, vận hành với tối đa 750 thế hệ. Các thông số cr là hệ số lai ghép, được chọn thông thường là 0.9, hệ số f quyết định sự khác biệt giữa các thế hệ, f càng nhỏ thì sự thay đổi các thế hệ càng nhỏ, đối với hệ có nhiều biến, nên chọn f nhỏ, vì vậy trong mơ hình 90 biến này hệ số f được chọn là 0.01. Kết quả được đánh giá qua phương pháp dự đốn.
30
Hình 3.5. Kết quả huấn luyện nhận dạng ngõ ra bồn 2
Hình 3.5 cho thấy kết quả của q trình huấn lun mơ hình Fuzzy nhiều lớp đạt giá trị hàm mục tiêu cuôi cùng là 0.0113 với cr = 0.9, f = 0.01 đối với ngõ ra x2. Qua kết quả thực tế này có thể thấy ngõ ra của mơ hình dự báo bám sát với ngõ ra thực tế với sai số rất nhỏ.
Hình 3.6 cho thấy đáp ứng khi đánh giá mơ hình với một tập dữ liệu khác. Kết quả cho thấy khả năng nhận dạng của mơ hình Fuzzy nhiều lớp đạt kết quả tốt khi nhận dạng mơ hình.
Hình 3.7 cho thấy giá trị hàm mục tiêu trong quá trình huấn luyện mơ hình. Giá trị hàm mục tiêu đạt trị tối thiểu 0.0113 sau 625 thế hệ và giữ nguyên giá trị này đến khi quần thể đạt tới thế hệ cuối cùng. thời gian tính tốn khoảng 45 phút để chạy hết 750 thế hệ trên CPU core i5 - 2.5Ghz.
Tương tự như vậy, Hình 3.8, Hình 3.9 và Hình 3.10 cho thấy kết quả huấn luyện, đánh giá và hàm mục tiêu đối với mơ hình Fuzzy dùng cho ngõ ra x4.
31
Hình 3.6. Kết quả đánh giá chất lượng nhận dạng ngõ ra bồn 2
32
Hình 3.8. Kết quả nhận dạng mơ hình Fuzzy với ngõ ra x4
33
Hình 3.9 cho thấy kết quả đánh giá với một tập dữ liệu khác trên cùng một mơ hình Fuzzy nhiều lớp được huấn luyên trước đó cho ngõ ra x4. Ở mẫu thứ 800, ngõ ra của mơ hình nhận dạng khơng đạt được giá trị giống như mơ hình thật, do q trình nhận dạng, độ cao tơi đa của mơ hình nhận dạng khơng có trường hợp này, cho nên mơ hình huấn luyện khơng thể đạt tới được. Để khắc phục tình trạng này, tập dữ liệu nhận dạng phải đủ lớn bao quát được tất cả các tình huống và trường hợp.
Hình 3.10 cho thấy giá trị hàm mục tiêu được tối thiểu hóa trong q trình nhận dạng. Giá trị hàm cuối cùng đạt được là 0.0127 sau 750 thế hệ.
Hình 3.10. Giá trị hàm mục tiêu khi huấn luyện mơ hình Fuzzy cho ngõ ra x4
3.2.3. Kết quả nhận dạng mơ hình ngược
Tương tự như mơ hình thuận, mơ hình Fuzzy nhiều lớp MIMO ngược cũng được tạo thành từ 2 mơ hình Fuzzy MISO, mỗi mơ hình Fuzzy nhiều lớp MISO đại diện cho một ngõ ra, ngõ ra của mơ hình ngược ở đây là giá trị điện áp điều khiển ứng với các giá trị ngõ vào là giá trị mực nước và các giá trị điện áp trước đó theo cấu trúc NARX. Mơ hình MISO đầu tiên bao gồm 4 ngõ vào (x2[n], x2[n-1], u1[n-1], u2[n-1]) và một
34
ngõ ra (u1[n]). Mơ hình MISO thứ 2 cũng có 4 ngõ vào (x4[n], x4[n-1], u1[n-1], u2[n-
1]) và có một ngõ ra (u2[n]). Kết quả được đánh giá bằng phương pháp dự báo.
Giải thuật DE áp dụng cho nhận dạng mơ hình ngược được chạy tối đa 1000 thế hệ, 200 cá thể trong quần thể, cr = 0.9, f = 0.1; Hàm mục tiêu được chọn theo tiêu chí
trung bình bình phương sai số giữa ngõ ra thực tế và ngõ ra của mơ hình Fuzzy.
Hình 3.11 cho thấy kết quả huấn luyện của mơ hình Fuzzy nhiều lớp nhận dạng mơ hình ngược với ngõ ra là điện áp cấp cho động cơ bơm 1. Kết quả cho thấy khi huấn luyện sai số lớn nhất khơng vượt q 0.1V
Hình 3.12 cho thấy kết quả đánh giá của mơ hình Fuzzy nhiều lớp nhận dạng mơ hình ngược với ngõ ra là điện áp cấp cho động cơ bơm 1. Kết quả đánh giá sử dụng một tập dữ liệu vào ra khác hoàn toàn so với tập dữ liệu dùng nhận dạng. Kết quả cho thấy khi đánh giá, sai số lớn nhất vẫn không quá 0.1V
35
Hình 3.12. Kết quả huấn luyện mơ hình Fuzzy ngõ ra là điện áp bơm.
Hình 3.13. Giá trị hàm mục tiêu qua thế hệ huấn luyện mơ hình Fuzzy nhiều lớp cho ngõ ra u1.
Hình 3.13 cho thấy giá trị hàm mục tiêu khi huấn luyện mơ hình Fuzzy nhiều lớp cho ngõ ra u1 giảm xuống dưới 10-2 rất nhanh chỉ sau 500 thế hệ huấn luyện.
36
Hình 3.14. Kết quả huấn luyện mơ hình Fuzzy ngõ ra là điện áp bơm 2.
Hình 3.14, Hình 3.15, Hình 3.16 thể hiện kết quả nhận dạng, đánh giá và hàm mục tiêu đối với mơ hình ngược cho ngõ ra u2. Hình 3.14 cho thấy kết quả huấn luyện của mơ hình Fuzzy nhiều lớp nhận dạng mơ hình ngược với ngõ ra là điện áp cấp cho động cơ bơm 2, Hình 3.15 là kết quả đánh giá mơ hình với một tập dữ liệu khác. Kết quả cho thấy khi huấn luyện và khi đánh giá sai số lớn nhất không vượt quá 0.12V .
Hình 3.16 cho thấy giá trị hàm mục tiêu khi huấn luyện mơ hình Fuzzy nhiều lớp cho ngõ ra u2 hội tụ giảm xuống 10-2 rất nhanh chưa tới 100 thế hệ.
Kết quả ở đây còn cho thấy sự khác biệt khi chọn f=0.01 và f=0.1 trong nhận dạng mơ hình thuận và mơ hình ngược. Với f=0.01 trong nhận dạng mơ hình thuận, hàm mục tiêu có độ mịn hơn so với f=0.1 ở nhận dạng mơ hình ngược. Tuy nhiên đối với nhận dạng mơ hình thuận, khi f=0.1 thì kết quả huấn luyện mơ hình thuận khơng đạt vì các giá trị tham số thay đổi lớn dẫn tới mất khả năng hội tụ.
37
Hình 3.15. Kết quả đánh giá mơ hình Fuzzy ngõ ra là điện áp bơm 2
Hình 3.16. Giá trị hàm mục tiêu qua các thế hệ huấn luyện mơ hình Fuzzy nhiều lớp cho ngõ ra u2
38
3.3. MƠ HÌNH PAM SONG SONG
3.3.1. Mơ hình PAM song song
PAM là một cơ cấu chấp hành sử dụng khí nén. Khi được cấp khi nén ở mức độ cho phép, cơ cấu sợi PAM co lại và tạo ra lực. Khi khơng duy trì nguồn cung cấp khí nén, cơ cấu PAM trở lại trạng thái ban đầu của nó. Bản thân cơ cấu chấp hành PAM là một hệ có tính trễ [131]–[133] thể hiện ở 2 giai đoạn cấp khi nén tạo ra lực và xả khí nén phục hổi trạng thái ban đầu có đặc tuyến khác nhau. nên mơ hình PAM song song cũng là một mơ hình phù hợp để kiểm chứng các giải thuật trong luận án.
Ngày nay, có nhiều cách mơ hình hóa sợi PAM để khảo sát trên mơ phỏng và thiết kế các bộ điều khiển cho nó. Phương pháp sử dụng các mơ hình Fuzzy hoặc nơ-ron kết hợp giải thuật thông minh nhận dạng mơ hình thuận, mơ hình ngược là một phương pháp hiệu quả được nhiều nhà khoa học áp dụng
Có nhiều cách cấu hình PAM để ứng dụng vào thực nghiệm như:
• Cấu hình 1 sợi PAM kết hợp lị xo. Đây cũng là cấu hình được sử dụng trong luận án để khảo sát các đặc tính và điều khiển thực nghiệm mơ hình PAM.
• Cấu hình 2 sợi PAM với cơ chế kéo đẩy.
Mơ hình PAM 2 bậc song song là một mơ hình phi tuyến MIMO được kết hợp giữa cấu trúc robot song song 2 bậc và cấu hình PAM kết hợp lị xo ở 2 khớp điều khiển. Mơ hình có 2 ngõ vào (điện áp điều khiển van tuyến tính), 2 ngõ ra (góc được đo từ encoder). Trong hệ thống này, sợi PAM 1 điều khiển trực tiếp góc của khớp 1 ( 1) và sợi PAM thứ 2 điều khiển trực tiếp góc của khớp 2 ( 2)
1. Air source 2. Encoder 3. PAM 4. Electro pneumatic regulator 5. bias spring 1 2 2 3 3 4 4 5 5 Hình 3.17. Hình ảnh mơ hình thực tế
39
pneumatic actuator muscle
PCI 6221 Electro pneumatic regulator Encoder Air compressor θ1 θ2
pneumatic actuator muscle
Encoder Bias spring
Hình 3.18. Sơ đồ khối mơ hình PAM song song thực tế
Hình 3.17 thể hiện hình ảnh mơ hình PAM song song trong thực tế và Hình 3.18 thể hiện sơ đồ khối của mơ hình PAM để có thể hiểu rõ hơn về mơ hình.
3.3.2. Thu thập dữ liệu vào – ra
Dữ liệu thực tế được thu thập qua card PCI-6221 với Matlab/Simulink. Hai ngõ vào là điện áp được cấp vào van điều khiển, 2 ngõ ra là góc theo rad được thu thập qua 2