Kết quả đánh giá mơ hình Fuzzy với ngõ ra x4

Một phần của tài liệu Nhận dạng và điều khiển hệ phi tuyến có trễ dùng mô hình fuzzy nhiều lớp kếp hợp giải thuật tính toán mềm (Trang 47)

33

Hình 3.9 cho thấy kết quả đánh giá với một tập dữ liệu khác trên cùng một mơ hình Fuzzy nhiều lớp được huấn lun trước đó cho ngõ ra x4. Ở mẫu thứ 800, ngõ ra của mơ hình nhận dạng khơng đạt được giá trị giống như mơ hình thật, do q trình nhận dạng, độ cao tơi đa của mơ hình nhận dạng khơng có trường hợp này, cho nên mơ hình huấn luyện khơng thể đạt tới được. Để khắc phục tình trạng này, tập dữ liệu nhận dạng phải đủ lớn bao quát được tất cả các tình huống và trường hợp.

Hình 3.10 cho thấy giá trị hàm mục tiêu được tối thiểu hóa trong q trình nhận dạng. Giá trị hàm cuối cùng đạt được là 0.0127 sau 750 thế hệ.

Hình 3.10. Giá trị hàm mục tiêu khi huấn luyện mơ hình Fuzzy cho ngõ ra x4

3.2.3. Kết quả nhận dạng mơ hình ngược

Tương tự như mơ hình thuận, mơ hình Fuzzy nhiều lớp MIMO ngược cũng được tạo thành từ 2 mơ hình Fuzzy MISO, mỗi mơ hình Fuzzy nhiều lớp MISO đại diện cho một ngõ ra, ngõ ra của mơ hình ngược ở đây là giá trị điện áp điều khiển ứng với các giá trị ngõ vào là giá trị mực nước và các giá trị điện áp trước đó theo cấu trúc NARX. Mơ hình MISO đầu tiên bao gồm 4 ngõ vào (x2[n], x2[n-1], u1[n-1], u2[n-1]) và một

34

ngõ ra (u1[n]). Mơ hình MISO thứ 2 cũng có 4 ngõ vào (x4[n], x4[n-1], u1[n-1], u2[n-

1]) và có một ngõ ra (u2[n]). Kết quả được đánh giá bằng phương pháp dự báo.

Giải thuật DE áp dụng cho nhận dạng mơ hình ngược được chạy tối đa 1000 thế hệ, 200 cá thể trong quần thể, cr = 0.9, f = 0.1; Hàm mục tiêu được chọn theo tiêu chí

trung bình bình phương sai số giữa ngõ ra thực tế và ngõ ra của mơ hình Fuzzy.

Hình 3.11 cho thấy kết quả huấn luyện của mơ hình Fuzzy nhiều lớp nhận dạng mơ hình ngược với ngõ ra là điện áp cấp cho động cơ bơm 1. Kết quả cho thấy khi huấn luyện sai số lớn nhất khơng vượt q 0.1V

Hình 3.12 cho thấy kết quả đánh giá của mơ hình Fuzzy nhiều lớp nhận dạng mơ hình ngược với ngõ ra là điện áp cấp cho động cơ bơm 1. Kết quả đánh giá sử dụng một tập dữ liệu vào ra khác hoàn toàn so với tập dữ liệu dùng nhận dạng. Kết quả cho thấy khi đánh giá, sai số lớn nhất vẫn không quá 0.1V

35

Hình 3.12. Kết quả huấn luyện mơ hình Fuzzy ngõ ra là điện áp bơm.

Hình 3.13. Giá trị hàm mục tiêu qua thế hệ huấn luyện mơ hình Fuzzy nhiều lớp cho ngõ ra u1.

Hình 3.13 cho thấy giá trị hàm mục tiêu khi huấn luyện mơ hình Fuzzy nhiều lớp cho ngõ ra u1 giảm xuống dưới 10-2 rất nhanh chỉ sau 500 thế hệ huấn luyện.

36

Hình 3.14. Kết quả huấn luyện mơ hình Fuzzy ngõ ra là điện áp bơm 2.

Hình 3.14, Hình 3.15, Hình 3.16 thể hiện kết quả nhận dạng, đánh giá và hàm mục tiêu đối với mơ hình ngược cho ngõ ra u2. Hình 3.14 cho thấy kết quả huấn luyện của mơ hình Fuzzy nhiều lớp nhận dạng mơ hình ngược với ngõ ra là điện áp cấp cho động cơ bơm 2, Hình 3.15 là kết quả đánh giá mơ hình với một tập dữ liệu khác. Kết quả cho thấy khi huấn luyện và khi đánh giá sai số lớn nhất không vượt quá 0.12V .

Hình 3.16 cho thấy giá trị hàm mục tiêu khi huấn luyện mơ hình Fuzzy nhiều lớp cho ngõ ra u2 hội tụ giảm xuống 10-2 rất nhanh chưa tới 100 thế hệ.

Kết quả ở đây còn cho thấy sự khác biệt khi chọn f=0.01 và f=0.1 trong nhận dạng mơ hình thuận và mơ hình ngược. Với f=0.01 trong nhận dạng mơ hình thuận, hàm mục tiêu có độ mịn hơn so với f=0.1 ở nhận dạng mơ hình ngược. Tuy nhiên đối với nhận dạng mơ hình thuận, khi f=0.1 thì kết quả huấn luyện mơ hình thuận khơng đạt vì các giá trị tham số thay đổi lớn dẫn tới mất khả năng hội tụ.

37

Hình 3.15. Kết quả đánh giá mơ hình Fuzzy ngõ ra là điện áp bơm 2

Hình 3.16. Giá trị hàm mục tiêu qua các thế hệ huấn luyện mơ hình Fuzzy nhiều lớp cho ngõ ra u2

38

3.3. MƠ HÌNH PAM SONG SONG

3.3.1. Mơ hình PAM song song

PAM là một cơ cấu chấp hành sử dụng khí nén. Khi được cấp khi nén ở mức độ cho phép, cơ cấu sợi PAM co lại và tạo ra lực. Khi khơng duy trì nguồn cung cấp khí nén, cơ cấu PAM trở lại trạng thái ban đầu của nó. Bản thân cơ cấu chấp hành PAM là một hệ có tính trễ [131]–[133] thể hiện ở 2 giai đoạn cấp khi nén tạo ra lực và xả khí nén phục hổi trạng thái ban đầu có đặc tuyến khác nhau. nên mơ hình PAM song song cũng là một mơ hình phù hợp để kiểm chứng các giải thuật trong luận án.

Ngày nay, có nhiều cách mơ hình hóa sợi PAM để khảo sát trên mơ phỏng và thiết kế các bộ điều khiển cho nó. Phương pháp sử dụng các mơ hình Fuzzy hoặc nơ-ron kết hợp giải thuật thông minh nhận dạng mơ hình thuận, mơ hình ngược là một phương pháp hiệu quả được nhiều nhà khoa học áp dụng

Có nhiều cách cấu hình PAM để ứng dụng vào thực nghiệm như:

• Cấu hình 1 sợi PAM kết hợp lị xo. Đây cũng là cấu hình được sử dụng trong luận án để khảo sát các đặc tính và điều khiển thực nghiệm mơ hình PAM.

• Cấu hình 2 sợi PAM với cơ chế kéo đẩy.

Mơ hình PAM 2 bậc song song là một mơ hình phi tuyến MIMO được kết hợp giữa cấu trúc robot song song 2 bậc và cấu hình PAM kết hợp lị xo ở 2 khớp điều khiển. Mơ hình có 2 ngõ vào (điện áp điều khiển van tuyến tính), 2 ngõ ra (góc được đo từ encoder). Trong hệ thống này, sợi PAM 1 điều khiển trực tiếp góc của khớp 1 ( 1) và sợi PAM thứ 2 điều khiển trực tiếp góc của khớp 2 ( 2)

1. Air source 2. Encoder 3. PAM 4. Electro pneumatic regulator 5. bias spring 1 2 2 3 3 4 4 5 5 Hình 3.17. Hình ảnh mơ hình thực tế

39

pneumatic actuator muscle

PCI 6221 Electro pneumatic regulator Encoder Air compressor θ1 θ2

pneumatic actuator muscle

Encoder Bias spring

Hình 3.18. Sơ đồ khối mơ hình PAM song song thực tế

Hình 3.17 thể hiện hình ảnh mơ hình PAM song song trong thực tế và Hình 3.18 thể hiện sơ đồ khối của mơ hình PAM để có thể hiểu rõ hơn về mơ hình.

3.3.2. Thu thập dữ liệu vào – ra

Dữ liệu thực tế được thu thập qua card PCI-6221 với Matlab/Simulink. Hai ngõ vào là điện áp được cấp vào van điều khiển, 2 ngõ ra là góc theo rad được thu thập qua 2

encoder 3600 xung/vịng để đảm bảo độ chính xác.

Dữ liệu ngõ vào được tạo ra ngẫu nhiên với giá trị từ 1V đến 6V. Ngõ ra được thu thập có giá trị thay đổi trong khoảng 0 đến 0.6 rad. Tương tự, dữ liệu dùng đánh giá mơ

hình là một tập dữ liệu khác so với tập dữ liệu dùng trong nhận dạng.

Hình 3.19 và Hình 3.20 thể hiện dữ liệu huấn luyện và đánh giá có 2 điện áp ngõ vào điều khiển 2 sợi PAM tương ứng với 2 ngõ ra là góc. Hai hình bên trái thể hiện điện áp điều khiển PAM 1 và góc của khớp 1, 2 hình bên phải là điện áp điều khiển và góc của PAM 2, khớp 2.

Thời gian lấy mẫu đối với hệ PAM là 0.01 giây trong toàn bộ quá trình nhận dạng và điều khiển.

40

Hình 3.19. Dữ liệu huấn luyện mơ hình PAM

41

3.3.3. Huấn luyện mơ hình thuận – ngược

Sau khi có dữ liệu, giải thuật DE được sử dụng để huấn luyện mơ hình. Mơ hình Fuzzy nhiều lớp được sử dụng để nhận dạng mơ hình thuận bao gồm 2 mơ hình Fuzzy nhiều lớp MISO, mỗi mơ hình MISO có 4 mơ hình Fuzzy T-S với 2 mơ hình ở lớp vào, 1 mơ hình ở lớp giữa như Hình 3.21. Hai mơ hình ở lớp vào mô tả các tác động giữa ngõ vào và ngõ ra, lớp giữa mơ tả các đặc tính tác động chéo của mơ hình. Ngõ ra như định nghĩa là một hàm SUM. Mơ hình MISO đầu tiên có 4 ngõ vào lần lượt là u1[n], u2[n],

x1[n-1], x1[n-2] một ngõ ra là x1[n]. Tương tự cho mơ hình MISO thứ 2 với các ngõ

vào lần lượt là u1[n], u2[n], x2[n-1], x2[n-2] và 1 ngõ ra x2[n].

Mơ hình Fuzzy nhiều lớp nhận dạng mơ hình ngược cho hệ PAM song song cũng có 2 mơ hình MISO, mơ hình đầu tiên có 4 ngõ vào (x1[n], x2[n], u1[n-1], u1[n-2]) và một ngõ ra u1[n]. Mơ hình thứ 2 cũng có 4 ngõ vào (x1[n], x2[n], u2[n-1], u2[n-2]) và một ngõ ra u2[n]. Sau khi được huấn luyện, mơ hình được đánh giá với một tập dữ liệu

khác. Hàm mục tiêu được chọn theo tiêu chí trung bình bình phương sai số giữa ngõ ra thực tế và ngõ ra của mơ hình Fuzzy.

42

Hình 3.22. Kết quả 10 lần huấn luyện mơ hình

Mơ hình thuận được huấn luyện trong 10 lần với cùng một tập dữ liệu, khác nhau ở các tham số khởi tạo ban đầu. Kết quả huấn luyện được thể hiện ở cùng một hình, có thêm tín hiệu tham chiếu để so sánh (Hình 3.22). Dữ liệu ngõ ra thứ 2 khơng có khác biệt nhiều so với dữ liệu ngõ ra thứ nhất nên không được thể hiện bằng hình ảnh trong luận án.

Hình 3.23 cho thấy kết quả đánh giá mơ hình thuận trên tập dữ liệu đánh giá. Kết quả cho thấy sai số khơng có khác biệt nhiều so với khi nhận dạng.

Hình 3.24 thể hiện hình ảnh của hàm mục tiêu trong quá trình nhận dạng mơ hình trong 10 lần thí nghiệm và kết quả trung bình của 10 lần. Trục x và trục y được thể hiện trên thang loragit.

43

Hình 3.23. Kết quả 10 lần đánh giá mơ hình

44

Hình 3.25. Kết quả 10 lần huấn luyện mơ hình

45

Hình 3.27. Kết quả hàm mục tiêu trong 10 lần huấn luyện

Kết quả nhận dạng mơ hình ngược tương tự như mơ hình thuận, được huấn luyện trên tập dữ liệu gồm 2000 mẫu, thực hiện 10 lần thí nghiệm huấn luyện đánh giá để cho được kết quả khách quan. Hình 3.25 thể hiện kết quả huấn luyện 10 lần. Hình 3.26 thể hiện kết quả đánh giá 10 lần trên một tập dữ liệu khác. Sai số đánh giá và sai số khi huấn luyện khác nhau khơng đáng kể.

Hình 3.27 thể hiện hàm mục tiêu khi huấn luyện mơ hình ngược trong 10 lần thí nghiệm và kết quả trung bình của 10 lần thí nghiệm đó. Các trục x và y theo thang logarit.

3.4. HUẤN LUYỆN GHÉP TẦNG MƠ HÌNH FUZZY NHIỀU LỚP ỨNG DỤNG NHẬN DẠNG HỆ PHI TUYẾN ĐA BIẾN NHẬN DẠNG HỆ PHI TUYẾN ĐA BIẾN

3.4.1. nhận dạng tham số mơ hình Fuzzy nhiều lớp bằng phương pháp ghép tầng

Luận án này đề xuất một cách huấn luyện ghép tầng áp dụng cho nhận dạng tham số mơ hình Fuzzy nhiều lớp nhằm giảm chi phí tính tốn và tăng độ chính xác khi sử dụng cùng với các giải thuật tối ưu như DE, GA, PSO, …để xấp xỉ các hàm phi tuyến.

46

Sơ đồ khối quá trình huấn luyện ghép tầng được thể hiện ở Hình 3.28. Trong đó mơ hình đầu tiên được huấn luyện trước, sau đó các mơ hình mới được tạo ra và thêm vào kết hợp với mơ hình đầu tiên. Chỉ có mơ hình mới được thêm vào được huấn luyện trong khi các mơ hình trước đó giữ ngun giá trị khơng thay đổi. Mơ hình Fuzzy T-S có thể được thêm vào lớp ẩn, và có thể mở rộng qui mơ đối với các hệ phức tạp. Quá trình huấn luyện thêm vào tới khi nào giá trị hàm mục tiêu đạt tới được giá trị mong muốn.

First training second training n-th training

Fuzzy T-S Fuzzy T-S Fuzzy T-S sum output MISO Fuzzy T-S Fuzzy T-S sum output Core Core New Fuzzy T-S Fuzzy T-S Fuzzy T-S sum output Core New Fuzzy T-S ... ... ...

Hình 3.28. Quá trình huấn luyện ghép tầng

3.4.2. Thu thập dữ liệu

Dữ liệu được thu thập trong 5 phút với thời gian lấy mẫu 0.1 giây. Như vậy, tổng cộng có 3000 mẫu dữ liệu. Tập dữ liệu huấn luyện được sử dụng như Hình 3.29. Dữ liệu ngõ vào thuộc loại ngẫu nhiên với biên độ từ 7.5V đến 15V và thay đổi mỗi 10 giây. Giới hạn trên là giới hạn dưới để đảm bảo mực nước khơng về 0 hoặc tràn bình. Dữ liệu ngõ vào là điện áp điều khiển động cơ bơm 1 (u1), và động cơ bơm 2 (u2). Dữ liệu ngõ ra là giá trị mực nước theo cm của bồn 2 (x2) và bồn 4 (x4) được thu thập qua cảm biến.

Dữ liệu đanh giá mơ hình được thể hiện như ở Hình 3.30. Đây là một tập dữ liệu khác so với dữ liệu dùng huấn luyện với ngõ vào cũng theo dạng ngẫu nhiên với biên độ từ 7.5V đến 15V và thời gian thay đổi mỗi 10 giây.

47

Hình 3.29. Dữ liệu vào-ra đễ huấn luyện.

Hình 3.30. Dữ liệu đánh giá mơ hình.

3.4.3. Huấn luyện mơ hình

Sau khi có được tập dữ liệu nhận dạng và tập dữ liệu dùng đánh giá mơ hình. Giải thuật DE được dùng để tối ưu tham số mơ hình Fuzzy nhiều lớp. Trong đó mỗi ngõ ra của mơ hình nhiều lớp được mô tả bằng mơ hình Fuzzy nhiều ngõ vào một ngõ ra (MISO). Với mơ hình bồn nước đơi như ở mục 3.2, có 2 ngõ ra là mực nước ở bồn thứ

48

2 và thứ 4, và 2 ngõ vào điều khiển động cơ bơm 1 và 2. Cho nên, mơ hình Fuzzy nhiều lớp được xây dựng gồm 2 mơ hình Fuzzy MISO. Với mỗi mơ hình MISO có 4 mơ hình Fuzzy T-S nhỏ bên trong, với 2 mơ hình ở lớp vào và 2 mơ hình ở lớp ẩn. Ngõ ra của mỗi mơ hình MISO là tổng của tất cả các mơ hình con bên trong. Điều này có ý nghĩ rằng lớp vào thể hiện sự tác động của ngõ vào so với ngõ ra, con lớp ẩn thể hiện sự tác động chéo của các ngõ vào.

Bước tiếp theo, giải thuật tối ưu như DE, GA và PSO được áp dụng để tối ưu tham số mơ hình Fuzzy MISO với phương pháp huấn luyện ghép tầng. Mơ hình MISO bao gồm 4 ngõ vào (u1[n], u2[n], x2[n-1], x2[n-2]) và một ngõ ra (x2[n]). Sau khi huấn luyện xong, mơ hình MISO sẽ được đánh giá với một tập dữ liệu khác so với tập dữ liệu dùng huấn luyện. Hàm mục tiêu được chọn theo tiêu chí trung bình bình phương sai số giữa ngõ ra thực tế và ngõ ra của mơ hình Fuzzy. Kết quả được so sánh giữa 3 giải thuật với nhau và so sánh phương pháp huấn luyện ghép tầng với cách huấn luyện thông thường.

3.4.4. Kết quả huấn luyện

Kết quả tối ưu được so sánh giữa phương pháp huấn luyện thông thường và phương pháp huấn luyện ghép tầng. Trong luận án, nghiên cứu sinh thực hiện phương pháp huấn luyện ghép tầng với 3 tầng, thực hiện với 3 thuật toán PSO, GA, và DE. Mỗi quá trình huấn luyện bao gồm 300 thế hệ. Như vậy, tổng cộng có 900 thế hệ. Các giải thuật được thực hiện trên laptop với CPU core i5-3210m.

Các tham số của mơ hình Fuzzy nhiều lớp được nhận dạng với phương pháp ghép tầng được so sánh với phương pháp huấn luyện thông thường. Với cùng số lượng các tham số và số thế hệ bằng với tổng số thế hệ của phương pháp huấn luyện ghép tầng.

Các tham số của giải thuật tối ưu được thể hiện ở Bảng 3.2. Trong đó các tham số c1,

c2 là hệ số huấn luyện và w là hệ số quên của giải thuật PSO. Trong giải thuật GA

tham số CP là hệ số lai ghép và MP là hệ số đột biến. Các tham số được chọn theo

phương pháp thử-sai, có thể khơng phải là tốt nhất nhưng phù hợp trong bài toán so sánh kiểm chứng chất lượng của giải thuật nhận dạng ghép tầng được đề xuất.

Một phần của tài liệu Nhận dạng và điều khiển hệ phi tuyến có trễ dùng mô hình fuzzy nhiều lớp kếp hợp giải thuật tính toán mềm (Trang 47)

Tải bản đầy đủ (PDF)

(167 trang)