Kết quả kiểm ñịnh các hệ số hồi qui FF3FM

Một phần của tài liệu (LUẬN văn THẠC sĩ) ứng dụng một số mô hình đầu tư tài chính hiện đại vào thị trường chứng khoán việt nam (Trang 80 - 82)

Danh mục Hệ số hồi qui Giá trị hệ

số hồi qui Thống kê T p-value Kết quả kiểm ựịnh

S/L α -4.5569 -1.8955 0.0846 Cân nhắc khi bác bỏ H0 β-3 0.8385 5.8029 0.0001 Hoàn toàn bác bỏ H0 s 1.2553 6.2979 0.0001 Hoàn toàn bác bỏ H0 h -0.6601 -1.8268 0.0950 Cân nhắc khi bác bỏ H0 S/M α -2.3287 -1.0494 0.3165 Chấp nhận H0 β-3 0.8595 6.4445 0.0000 Hoàn toàn bác bỏ H0 s 0.8677 4.7159 0.0006 Hoàn toàn bác bỏ H0 h 0.4623 1.3860 0.1932 Chấp nhận H0 S/H α -2.8374 -1.7318 0.1112 Chấp nhận H0 β-3 0.8603 8.7360 0.0000 Hoàn toàn bác bỏ H0 s 0.8656 6.3725 0.0001 Hoàn toàn bác bỏ H0 h 0.8954 3.6361 0.0039 Có thể bác bỏ H0 B/L α -2.6163 -1.2231 0.2468 Chấp nhận H0 β-3 0.8581 6.6746 0.0000 Hoàn toàn bác bỏ H0 s -0.0876 -0.4939 0.6311 Chấp nhận H0 h 0.0520 0.1616 0.8745 Chấp nhận H0 B/M α -2.7709 -1.3757 0.1963 Chấp nhận H0 β-3 0.8639 7.1358 0.0000 Hoàn toàn bác bỏ H0 s -0.2259 -1.3528 0.2033 Chấp nhận H0 h 0.1491 0.4926 0.6320 Chấp nhận H0 B/H α -4.3357 -1.9562 0.0763 Cân nhắc khi bác bỏ H0 β-3 0.8363 6.2780 0.0001 Hoàn toàn bác bỏ H0 s 0.3021 1.6439 0.1285 Chấp nhận H0 h 0.4965 1.4904 0.1642 Chấp nhận H0

đối với trường hợp kiểm ựịnh anpha, trong 6 danh mục xem xét có 4 trường hợp chấp nhận giả thiết H0, tức xem anpha chứng khoán bằng 0 và có 2 trường hợp cần cân nhắc khi bác bỏ giả thiết H0.

đối với trường hợp kiểm ựịnh beta, có 6/6 trường hợp hồn toàn bác bỏ giả thiết H0, tức beta chứng khốn khơng thể bằng 0. điều này chứng tỏ rằng nhân tố thị trường (hay tỷ suất sinh lợi thị trường vượt trội) luôn ảnh hưởng ựến tỷ suất sinh lợi chứng khoán.

đối với trường hợp kiểm ựịnh s, kết quả có 3 trường hợp hồn tồn bác bỏ giả thiết H0 và 3 trường hợp chấp nhận giả thiết H0. điều thú vị là cả 3 trường hợp hoàn toàn bác bỏ giả thiết H0 là 3 danh mục có qui mơ nhỏ (S/M, S/M và S/H), cịn 3 trường hợp chấp nhận giả thiết H0 là 3 danh mục có qui mơ lớn (B/L, B/M và B/H.

đối với trường hợp kiểm ựịnh h, có 4 trường hợp chấp nhận H0, tức cho rằng nhân tố HML ựối với các danh mục S/M, B/M, B/L và B/H chẳng có ảnh nhưởng gì đến tỷ suất sinh lợi của nó. Có 1 trường hợp cần cân nhắc khi bác bỏ giả thiết H0 và 1 trường hợp có thể bác bỏ giả thiết H0.

Như vậy, so sánh với kết quả ứng dụng các mơ hình trên thế giới mà ựặc biệt là kết quả thực nghiệm tại TTCK Ấn độ và TTCK đài Loan như phân tắch ở chương 1 so với trường hợp này thì kết quả khơng khác mấy. Vai trị của hai nhân tố qui mơ và BE/ME trong việc giải thắch tỷ suất sinh lợi là mờ nhạt, các nhân tố này chỉ có ý nghĩa khi kết hợp với nhân tố thị trường.

2.6.2.2 Kiểm ựịnh sự phù hợp của hàm hồi qui, phân tắch hồi qui

Như phần trước, việc kiểm ựịnh sự phù hợp của hàm hồi qui chỉ có ý nghĩa ựối với hồi qui bội k biến (k>2). Nếu hồi qui 2 biến như CAPM thì việc kiểm ựịnh R2 trùng với kiểm ựịnh hệ số beta. Trong hồi qui bội, sự cần thiết phải kiểm ựịnh xem các hệ số hồi qui có khác 0 hay khơng ựể thấy ựược sự ành hưởng của từng nhân tố. Ngồi ra, cịn phải kiểm ựịnh R2 ựể thấy ựược mức ựộ ảnh hưởng của tổng các nhân tố (hay biến giải thắch) trong mơ hình hồi qui ựối với biến phụ thuộc (tỷ suất sinh lợi chứng khoán) như thế nào. Theo ựó, nếu R2 càng lớn thì hàm hồi qui càng phù hợp, ngược lại nếu R2 nhỏ thì chứng tỏ hàm hồi qui không phù hợp, ta cần phải thay ựổi, thêm hoặc bỏ các biến.

Với giả thiết H0: R2 = 0 và H1: R2 ≠ 0. Dùng phân phối Fisher-Snedecor ựể kiểm ựịnh. Với mức ý nghĩa bằng 5% (ựộ tin cậy 95%), ta có kết quả kiểm ựịnh như sau: Bảng 2.21: Kết quả kiểm ựịnh R2 trong FF3FM Danh mục Hệ số xác ựịnh bội R2

Thống kê F p-value Kết quả kiểm ựịnh

S/L 0.8774 26.2489 0.0000 Hoàn toàn bác bỏ H0 S/M 0.8580 22.1555 0.0001 Hoàn toàn bác bỏ H0 S/H 0.9234 44.2248 0.0000 Hoàn toàn bác bỏ H0 B/L 0.8380 18.9710 0.0001 Hoàn toàn bác bỏ H0 B/M 0.8583 22.2182 0.0001 Hoàn toàn bác bỏ H0 B/H 0.7960 14.3051 0.0004 Hoàn toàn bác bỏ H0

Ta thấy trong 6 danh mục kiểm ựịnh, tất cả đều hồn tồn bác bỏ giả thiết H0, tức cho rằng hàm hồi qui là phù hợp. Hơn nữa, quan sát các giá trị của R2, cho thấy hầu hết R2 đều có giá trị rất cao (lớn hơn 0.8), thể hiện hàm hồi qui giải thắch hơn 80% sự thay ựồi của tỷ suất sinh lợi chứng khốn. Ngồi 6 danh mục ựã kiểm ựịnh, kết quả kiểm ựịnh R2 của từng chứng khoán xem phần phụ lục.

2.6.2.3 Kiểm ựịnh tự tương quan, thống kê Durbin Watson

Trong hồi qui bội, giả thiết rằng khơng có tự tương quan giữa các phần dư ei, tức thành phần sai số của một quan sát nào đó khơng ảnh hưởng ựến sai số của quan sát khác. Nếu có tự tương quan, tức các phần dư (sai số) của các quan sát phụ thuộc lẫn nhau thì phương pháp hồi qui bình phương bé nhất khơng cịn ý nghĩa, chẳng hạn các ước lượng tuyến tắnh khơng chệch sẽ khơng cịn là ước lượng hiệu quả, các kiểm ựịnh T (Student) và F (Fisher-Snedecor) không ựáng tin cậy, tắnh tốn các giá trị phương sai và sai số tiêu chuẩn không hiệu quảẦ Do vậy, ta cần kiểm ựịnh xem Mơ hình hồi qui Fama-French 3 nhân tố có hiện tượng tự tương quan hay không.

Trong trường hợp này, ta kiểm ựịnh 2 phắa, với giả thiết H0: Khơng có tự tương quan và H1: Có tự tương quan. Dùng phân phối Durbin Watson ựể kiểm ựịnh. Với mức ý nghĩa 5% (ựộ tin cậy 95%), ta có kết quả kiểm ựịnh như sau:

Một phần của tài liệu (LUẬN văn THẠC sĩ) ứng dụng một số mô hình đầu tư tài chính hiện đại vào thị trường chứng khoán việt nam (Trang 80 - 82)

Tải bản đầy đủ (PDF)

(146 trang)