1. Đường thẳng song song.
GV: Cho hs cả lớp làm ngồi nháp . - Đường thẳng y = 0,5x - 1 cắt đường thẳng Gọi một HS đứng tại chỗ trả lời miệng .
GV : Khi a = a’ thì hai đường thẳng y = ax + b (a ≠ 0) và y = a’x + b’ (a’ ≠
0) song song với nhau hoặc trùng nhau và ngược lại . Vậy khi nào thì hai đường thẳng y = ax + b (a ≠ 0) và y = a’x + b’ (a’
≠ 0) cắt nhau ?
GV : Nêu ra trường hợp tổng quát như SGK.
GV nĩi : Khi a ≠ a’và b = b’ thì hai đường thẳng cĩ cùng tung độ gốc, do đĩ chúng cắt nhau tại một điểm trên trục tung cĩ tung độ là b.
y = 1,5x + 2. * Tổng quát :
* Chú ý : Sgk
GV : Đưa đề bài lên bảng phụ .
Cho hai hàm số bậc nhất y = 2mx + 3 và y = (m + 1)x + 2. Tìm giá trị của m để hàm số đã cho là :
a)Hai đường thẳng cắt nhau .
b)Hai đường thẳng song song với nhau. Gv hướng dẩn hs làm . Giải Các hàm số đã cho là bậc nhất, do đĩ các hệ số a và a’ phải khác 0. Tức là : 2m ≠ 0 ⇔ m ≠ 0 và m + 1 ≠ 0 ⇔ m ≠ -1 a)Hai đường thẳng cắt nhau a ≠ a’ 2m ≠ m + 1 m ≠ 1 Kết hợp với điều kiện trên ta cĩ
0, 1, 1
m≠ m≠ m≠ −
b)Hai đường thẳng song song a = a’, b ≠ b’ tức là 2m = m + 1 và 3 ≠ 2 hay m = 1
kết hợp với đk ta nhận m = 1 .
3. Củng cố : Cho hs nhắc lại các đk để hai đường thẳng cắt nhau, song song, trùng nhau .
4. Dặn dị : - Nắm vững các điều kiện để hai đường thẳng y = ax + b (a ≠ 0) và y = a’x + b’ (a’ ≠ 0) cĩ thể song song, cĩ thể cắt nhau và cĩ thể trùng nhau . y = a’x + b’ (a’ ≠ 0) cĩ thể song song, cĩ thể cắt nhau và cĩ thể trùng nhau .
- Làm các bài tập : 20, 21, 22, 23, 25 trang 54 – 55 SGK. - Tiết sau luyện tập .
---
Hai đường thẳng y = ax + b (a ≠ 0) và y = a’x + b’ (a’ ≠ 0) cắt nhau khi và chỉ khi a ≠ a’.