CHƯƠNG 4 KẾT QUẢ NGHIÊN CỨU VÀ BÌNH LUẬN
4.2.3. Ảnh hưởng các thông số công nghệ đến quá trình hoàn nguyên dioxit titan bằng hỗn hợp (Ca + Mg)
Từ kết quả nghiên cứu thăm dò nhiệt kim TiO2 bằng canxi và magie nhận thấy, quá trình nhiệt kim TiO2 bằng canxi cho hiệu suất thu hồi và chất lượng Ti cao (98% Ti). Còn hoàn nguyên TiO2 bằng magie cũng thu được sản phẩm titan, nhưng so với canxi hiệu quả thấp hơn. Ý tưởng đó là cơ sở để chúng nghiên cứu công nghệ chế tạo titan kim loại từ TiO2 theo phương pháp hoàn nguyên bằng hỗn hợp (Ca + Mg). Hoàn nguyên bằng hỗn hợp này có thể nâng cao hiệu suất thu hồi titan so với magie và giảm được giá thành sản phẩm so với hoàn nguyên bằng canxi.
Các thí nghiệm được thực hiện trên thiết bị nhiệt kim chân không, sử dụng chén phản ứng bằng thép không gỉ SS316 dung tích 150 ml đặt trong bom nhiệt kim dung tích 500 ml, có thiết bị đo nhiệt độ và đường nạp khí agon bảo vệ. Chọn chất trợ dung là hệ muối (65% MgCl2 + 10% CaCl2 + 25% NaCl).
Mô tả thí nghiệm nghiên cứu cho tất cả các thông số ảnh hưởng đến quá trình hoàn nguyên TiO2 bằng hỗn hợp (Ca + Mg) được tiến hành như sau:
Tiến hành loạt thí nghiệm, mỗi thí nghiệm sử dụng 80 g dioxit titan cùng chất trợ dung và hỗn hợp chất hoàn nguyên (Ca + Mg), cân đong theo tính toán được trộn đều bằng tay, cho vào chén nhiệt kim, sấy ở 70 oC thời gian là một giờ. Tiếp theo cho chén nguyên liệu vào trong bom hoàn nguyên, siết chặt đai ốc của bom, sử dụng bơm cơ học hút chân không và nạp khí agon. Quá trình hút, nạp agon được thực hiện 8 lần trong suốt quá trình gia nhiệt với tốc độ nâng nhiệt 30 oC/ phút, đến 500 o
C giữ nhiệt 20 phút, đồng thời dừng hút chân không, nạp đầy agon trong bom nhiệt kim sao cho áp suất dư đạt 1 at. Sau đó nâng với 10 oC/phút cho đến nhiệt độ định trước. Ở 300 o
C cũng giữ 20 phút để đồng đều nhiệt độ cho toàn bộ lớp bột. Sản phẩm sau nhiệt kim để nguội cùng lò, đem ngâm nước trong 24 giờ. Sản phẩm sau ngâm được lọc để bỏ phần đã tan trong nước. Phần bột nhão không tan cho phản ứng với axit HCl. Sau khi hòa tách bằng axit, lọc bỏ các sản phẩm phụ và tạp chất, bột Ti kim loại không tan, được rửa nhiều lần bằng nước cất, tiếp tục rửa 3 lần bằng axeton. Sản phẩm bột Ti thu được sấy trong chân không ở 60 oC, thời gian sấy 6 giờ.
Quá trình mô tả thực nghiệm ở 800 oC, thời gian 2 giờ, được sơ đồ hóa trên hình vẽ 4.17 như sau:
Hình 4.17. Sơ đồ mô tả quá trình hoàn nguyên ở 800 oC, thời gian 2 giờ
Quá trình thực nghiệm cho thấy, ở 650 oC chất trợ dung chảy lỏng hoàn toàn, áp suất của bom nhiệt kim bắt đầu tăng, có thể phán đoán rằng phản ứng đã xảy ra, đó là phản ứng giữa pha rắn Mg, Ca với pha rắn TiO2 (theo tính toán nhiệt động học) [7] và một phần pha lỏng (Mg – Ca) với pha rắn TiO2. Theo giản đồ 2 nguyên (hình 2.18) sự xuất hiện sớm của pha lỏng và thay đổi áp suất ở nhiệt độ thấp hơn, đó là sự khác biệt giữa hoàn nguyên hỗn hợp 2 nguyên tố với hoàn nguyên một nguyên tố.
Kết thúc quá trình hoàn nguyên, sản phẩm thu được ở các chế độ nghiên cứu khác nhau khi lấy ra từ thiết bị nhiệt kim đều có hình thức giống nhau, được trình bày trên hình 4.18. Trên bề mặt chén nhiệt kim có lớp bột magie màu trắng ngưng tụ (hình 4.18 a), tiếp theo lớp kết khối của chất trợ dung (hình 4.18 c), ở dưới là hỗn hợp sản phẩm hoàn nguyên. Cấu trúc của sản phẩm kết khối hay rời rạc phụ thuộc vào quá trình nén hoặc không nén nguyên liệu khi cho vào chén để hoàn nguyên (hình 4.18 e, f). Nếu lượng Mg dư nhiều, một phần bay hơi ngưng tụ trên miệng chén, phần còn lại kết tụ thành hạt bám xung quanh chén (hình 4.18 d). a b 800 oC Nhi ệt đ ộ, o C
Thời gian, giờ
500 oC 300 oC 300 oC 70 oC 20 phút 20 phút 1 giờ 10 oC/ phút 2 giờ Nguội cùng lò 30 oC/ phút 30 oC/ phút
c d
e f
Hình 4.18. Ảnh sản phẩm sau nhiệt kim
4.2.3.1. Ảnh hưởng của hàm lượng Ca trong hỗn hợp chất hoàn nguyên (Mg + Ca)
đến quá trình hoàn nguyên TiO2
Điều kiện thí nghiệm:
- Thời gian hoàn nguyên: 2 giờ - Nhiệt độ hoàn nguyên: 800 oC - Khối lượng TiO2: 80 g
- Chất trợ dung (65% MgCl2 + 10% CaCl2 + 25% NaCl): 146,4 g - Sử dụng khí agon để bảo vệ trong suốt quá trình hoàn nguyên.
Nghiên cứu thay thế magie bởi canxi với tỷ lệ từ 10 - 50% Ca trong hợp chất hoàn nguyên, kết quả được thể hiện trên bảng 4.13.
Bảng 4.13. Kết quả ảnh hưởng của tỷ lệ canxi trong hỗn hợp đến hiệu suất hoàn nguyên
TN Tỷ lệ Ca trong hỗn hợp (Mg + Ca), (%) Kết quả Hiệu suất hoàn nguyên, (%)
Hàm lượng Ti, % Hiệu suất thu hồi Ti, (%)
1 10 92,0 96,0 88,3 2 20 94,0 97,2 91,3 3 30 93,7 97,0 90,9 4 35 94,6 97,2 91,9 5 40 92,8 96,8 89,8 6 45 93,1 97,1 90,4 7 50 92,0 96,3 88,6
Kết quả bảng 4.13 cho thấy, hoàn nguyên TiO2 bằng hỗn hợp (10% Ca + 90% Mg) hiệu suất hoàn nguyên tăng đáng kể so với hoàn nguyên 100% Mg. Nếu tiếp tục tăng tỷ lệ Ca trong hỗn hợp, thì hiệu suất hoàn nguyên có tăng, nhưng mức độ tăng rất ít. Kết quả phân tích bằng phương pháp hóa học thu được Ti có hàm lượng cao nhất 97,2%. Vì vậy để hoàn nguyên triệt để khối lượng TiO2 và hiệu suất hoàn nguyên cao, tác giả chọn tỷ lệ hỗn hợp là (20% Ca + 80% Mg).
4.2.3.2. Ảnh hưởng của tỷ lệ chất hoàn nguyên thực tế so với tính toán lý thuyết
đến quá trình hoàn nguyên dioxit titan.
Điều kiện thí nghiệm:
- Thời gian hoàn nguyên: 2 giờ - Nhiệt độ hoàn nguyên: 800 oC
- Chọn tỷ lệ chất hoàn nguyên (20% Ca + 80% Mg):
- Chất trợ dung (65% MgCl2 + 10% CaCl2 + 25% NaCl): 146,4 g
- Thay đổi tỷ lệ hỗn hợp (Mg + Ca) từ 100 - 150%, kết quả nghiên cứu được thể hiện trên bảng 4.14.
Bảng 4.14. Ảnh hưởng tỷ lệ (Ca + Mg) đến hiệu suất hoàn nguyên
STT Tỷ lệ chất hoàn nguyên, (%) Kết quả Hiệu suất hoàn nguyên, (%)
Hàm lượng Ti, % Hiệu suất thu hồi Ti, % 1 100 85,2 87,0 74,1 2 110 93,0 96,1 89,3 3 120 94,0 97,0 91,1 4 130 94,0 97,0 91,3 5 140 93,0 96,8 90,0 6 150 91,6 96,5 88,3
Kết quả thực nghiệm cho thấy, ở tỷ lệ 120 % hỗn hợp chất hoàn nguyên (Mg + Ca) đạt hiệu suất thu hồi và chất lượng sản phẩm cao. Nếu tăng lượng chất hoàn nguyên dẫn đến dư Mg và Ca. Lượng Mg dư một phần bay hơi ngưng tụ phía trên bom nhiệt kim, một phần tích tụ thành hạt Mg bám vào xung quanh thành chén (hình 4.18 d) gây lãng phí nguyên liệu. Lượng Ca dư khi hòa tách sẽ tác dụng với nước theo phản ứng: (Ca + H2O = CaO + H2), Ca cháy tạo ngọn lửa màu vàng cam, khí H2 thoát ra cũng cháy theo, gây nguy hiểm cho người thao tác. Đồng thời kéo theo các hạt Ti nhỏ mịn cũng cháy dẫn đến giảm
hiệu xuất thu hồi Ti. Vì vậy chọn tỷ lệ chất hoàn nguyên (Mg + Ca)thực tế/(Mg + Ca)lý thuyết = 120% làm thông số tối ưu cho quá trình nghiên cứu tiếp theo.
Sản phẩm 97% Ti, (thí nghiệm số 3 bảng 4.14) được phân tích bằng phương pháp Xray, mẫu cũng được quan sát bằng kính hiển vi điện tử quét (SEM) và sử dụng phương pháp vi phân tích bằng phổ phân tán năng lượng (EDX) để đánh chất lượng sản phẩm. Kết quả thể hiện trên hình 4.19 và hình 4.20.
Hình 4.19. Kết quả phân tích Xray sản phẩm titan
Hình 4.20. Phân tích bằng phương pháp EDX và ảnh SEM sản phẩm bột 97% Ti
001001 001 0.1 mm0.1 mm0.1 mm0.1 mm0.1 mm Title : IMG1 --- Instrument : 6490(LA) Volt : 15.00 kV Mag. : x 400 Date : 2012/03/19 Pixel : 512 x 384
ZAF Method Standardless Quantitative Analysis Fitting Coefficient : 0.2006
Element (keV) Mass% Error% Atom% Compound Mass% Cation K N K 0.392 2.28 0.14 7.36 5.5770 Mg K* 1.253 0.24 0.12 0.45 0.1406 Ti K 4.508 97.48 0.28 92.19 94.2824 Total 100.00 100.00
Kết quả phân tích bằng phương pháp hóa học trong bảng 4.14 thu được sản phẩm có hàm lượng Ti cao nhất 97% Ti. Phân tích bằng phương pháp Xray, kết quả thu được hàm lượng Ti kim loại đạt 97,48%, còn lại tạp chất khí N2 chiếm 2,28%, lượng Mg có trong sản phẩm 0,24%, điều đó nói lên rằng Ti kim loại dạng bột rất dễ hút các tạp chất khí. Do đó quá trình hoàn nguyên phải đảm bảo môi trường khí trơ bảo vệ tuyệt đối, quá trình hòa tách làm sạch sản phẩm hoàn nguyên phải sử dụng nước cất, hòa tách ở nhiệt độ thấp. Ảnh SEM hình 4.20 cho thấy đó là hình ảnh của hạt Ti kim loại, kết quả phân tích bằng phương pháp EDX cho kết quả 96,3% Ti và 3,7% Mg. Như vậy số liệu kết quả phân tích đáng tin cậy, hoàn nguyên TiO2 bằng hỗn hợp (Ca + Mg) tốt hơn so với hoàn nguyên bằng Mg, nhưng không tốt bằng hoàn nguyên 100% bằng Ca, do phần mol của hỗn hợp <1.
4.2.3.3. Ảnh hưởng của nhiệt độ đến quá trình hoàn nguyên dioxit titan
Điều kiện thí nghiệm:
- Thời gian hoàn nguyên: 2 giờ
- Chất hoàn nguyên (20% Ca + 80% Mg): 66,1 g
- Chất trợ dung (65% MgCl2 + 10% CaCl2 + 25% NaCl): 146,4 g
- Nghiên cứu khoảng nhiệt độ hoàn nguyên từ 650 – 950 oC kết quả thể hiện trên bảng 4.15.
Bảng 4.15. Ảnh hưởng của nhiệt độ đến hiệu suất thu hồi titan kim loại
STT Nhiệt độ phản ứng, (o
C)
Kết quả Hiệu suất hoàn
nguyên, (%)
Hàm lượng Ti, (%)
Hiệu suất thu
hồi Ti, % Cỡ hạt, ( m) 1 650 81,2 - - 74 2 700 89,3 90,2 80,5 74 3 750 91,5 95,6 87,4 74 4 800 94,0 97,0 91,1 74 5 850 94,0 97,2 91,3 74 6 880 91,2 95,8 87,3 74 7 900 92,6 96,5 89,3 120 8 950 91,8 96,6 88,6 120
Kết quả bảng 4.15 vẽ được đồ thị mô tả mối quan hệ giữa nhiệt độ và hiệu suất thu hồi sản phẩm thể hiện trên hình 4.21.
Hình 4.21. Ảnh hưởng của nhiệt độ đến hiệu suất hoàn nguyên
Trong nghiên cứu thực nghiệm về nhiệt độ, có thể phán đoán rằng, ở 550 oC phản ứng các pha rắn đã xảy ra, được gọi là quá trình hoàn nguyên ở mức độ thấp, sản phẩm chủ yếu là các oxit trung gian ở dạng Ti2O3, Ti2O, TiO [37]. Trong khoảng nhiệt độ từ 800 – 850 oC, hiệu suất hoàn nguyên cao nhất (bảng 4.15). Nghiên cứu ở 880 oC, hiệu suất hoàn nguyên giảm. Theo tính toán [7] tại 882 oC đường biến thiên nhiệt động học theo nhiệt độ của các phản ứng hoàn nguyên đổi chiều đột ngột. Đó là điểm titan chuyển biến thù hình từ mạng lập phương tâm khối sang mạng lục giác xếp chặt, chứng tỏ chuyển biến thù hình liên quan chặt chẽ tới quá trình hoàn nguyên dioxit titan. Tại nhiệt độ chuyển biến thù hình, khả năng phản ứng hoàn nguyên là kém nhất, nên hiệu suất hoàn nguyên giảm. Do đó tác giả chọn nhiệt độ hoàn nguyên 800 oC.
Kết quả này cũng tương đồng với nhiệt độ hoàn nguyên TiO2 bằng Mg của tác giả người Đức công bố trong công trình [48].
4.2.3.4. Ảnh hưởng của thời gian đến quá trình hoàn nguyên dioxit titan
Điều kiện thí nghiệm:
- Nhiệt độ hoàn nguyên: 800 oC
- Chất hoàn nguyên (80% Mg + 20% Ca): 66,1 g
- Chất trợ dung (65% MgCl2 + 10% CaCl2 + 25% NaCl): 146,4 g - Thay đổi thời gian nhiệt kim từ 60 - 240 phút.
Bảng 4.16. Ảnh hưởng của thời gian hoàn nguyên đến hiệu suất thu hồi titan
Kết quả bảng 4.16 vẽ được đồ thị hiệu suất hoàn nguyên phụ thuộc vào thời gian.
Hình 4.22. Ảnh hưởng của thời gian đến hiệu suất hoàn nguyên
Thời gian là thông số quan trọng đối với quá trình nhiệt kim, nếu không đủ thời gian, quá trình nhiệt kim TiO2 chưa kết thúc, sản phẩm thu được chủ yếu các oxit Ti bậc thấp, một ít Ti kim loại. Trong bảng 4.16, hoàn nguyên dưới 90 phút, bột Ti thu được có hàm lượng dưới 90%. Khi đủ điều kiện về mặt thời gian, kết quả cho sản phẩm Ti bột có hàm STT Thời gian hoàn
nguyên, (phút)
Kết quả Hiệu suất hoàn
nguyên, (%) Hàm lượng Ti, (%) Hiệu suất thu hồi Ti, (%) 1 60 66,0 68,1 45,0 2 90 86,0 90,5 77,8 3 120 93,6 97,4 91,1 4 150 91,1 97,0 88,3 5 180 90,8 96,5 87,6 6 210 89,5 91,5 81,9
lượng cao. Cụ thể ở 120 phút hoàn nguyên TiO2 bằng hỗn hợp (Ca + Mg) thu được bột 97,4% Ti.
Kéo dài thời gian không có lợi cho quá trình nhiệt kim, vì chất tham gia phản ứng đã hết, sản phẩm không tạo thêm, năng lượng bị tiêu tốn theo thời gian. Các hạt Ti sinh ra có thể bị vón cục, CaO và MgO có cơ hội thâm nhập nằm lại trên biên giới các hạt Ti, quá trình hòa tách khó rửa trôi tạp chất này, dẫn đến giảm hiệu suất hoàn nguyên. Do đó tác giả chọn thời gian nhiệt kim 120 phút.
Mẫu sản phẩm số 4 trong bảng 4.16 được phân tích bằng phương pháp Xray, kết quả được thể hiện trên hình 4.23.
002002 002 0.1 mm0.1 mm0.1 mm0.1 mm0.1 mm Title : IMG1 --- - Instrument : 6490(LA) Volt : 15.00 kV Mag. : x 400 Date : 2012/03/19 Pixel : 512 x 384 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 keV 002 0 100 200 300 400 500 600 700 800 900 1000 Coun ts NKa NKsu m Mg Ka TiLl TiLa TiLsum TiKesc TiKa TiKb
ZAF Method Standardless Quantitative Analysis Fitting Coefficient : 0.2089
Element (keV) Mass% Error% Atom% Compound Mass% Cation K N K 0.392 3.48 0.14 10.96 8.4033 Mg K 1.253 0.26 0.12 0.47 0.1481 Ti K 4.508 96.26 0.29 88.58 91.4486 Total 100.00 100.00
Hình 4.23. Ảnh nhiễu xạ tia X mẫu sản phẩm số 4 bảng 4.16 bột titan kim loại 97% Ti
Kết quả phân tích sản phẩm bằng phương pháp Xray cho thấy các đỉnh lớn nhất trong biểu đồ nhiễu xạ chủ yếu là Ti, có một số pick nhỏ thể hiện là Mg với lượng dư là 0,26% và tạp chất khí là nitơ. Tạp chất khí có thể xâm nhập vào titan thông qua quá trình rửa sản phẩm hoàn nguyên, đối với bột titan có kích thước hạt càng nhỏ mịn, quá trình rửa dễ bị nhiễm bẩn tạp chất khí hơn so với bột Ti có kích thước lớn hơn.
Để thấy được hiệu quả của phương pháp hoàn nguyên bằng hỗn hợp (Ca + Mg) so với Ca và Mg, tác giả đã so sánh kết quả các thông số tối ưu về nhiệt độ, thời gian, tỷ lệ chất hoàn nguyên được thể hiện trong bảng sau:
Bảng 4.17. So sánh các thông số khi hoàn nguyên bằng Ca, Mg và hỗn hợp (Ca + Mg)
Hoàn nguyên bằng Nhiệt độ, (o
C) Thời gian, (giờ) Tỷ lệ chất hoàn nguyên, (%)
Ca 850 2 110
Mg 900 4 130
Ca + Mg 800 2 120
Thảo luận về cơ chế hoàn nguyên TiO2 bằng hỗn hợp (Mg + Ca):
So sánh quá trình hoàn nguyên TiO2 bằng hỗn hợp (Mg + Ca) hiệu quả hơn so với hoàn nguyên bằng Mg, cụ thể như:
- Nhiệt độ hoàn nguyên bằng hỗn hợp (Mg + Ca) là 800 oC, thấp hơn so với hoàn nguyên bằng Mg là 900oC, (hiệu quả về bài toán nhiệt).
- Tỷ lệ chất hoàn nguyên bằng hỗn hợp (Mg + Ca) là 120%, thấp hơn so với hoàn nguyên bằng Mg là 130%, (hiệu quả về nguyên liệu).
- Thời gian hoàn nguyên bằng hỗn hợp (Mg + Ca) 2 giờ, ngắn hơn so với hoàn nguyên bằng Mg là 4 giờ (hiệu quả về thời gian).
Có thể giải thích các ảnh hưởng tích cực khi sử dụng hỗn hợp (Ca + Mg) làm chất hoàn nguyên theo 3 cơ chế sau:
a). Cơ chế tạo ra pha lỏng có nhiệt độ thấp hơn nhiệt độ nóng chảy của Ca và Mg tạo điều kiện tiếp xúc pha lỏng hỗn hợp (Ca + Mg) và pha rắn (TiO2) tốt hơn nên cho kết quả tốt hơn.
Về mặt động học phản ứng: thấy rằng hoàn nguyên TiO2 bằng hỗn hợp (Ca + Mg) có nhiều yếu tố thuận lợi: Giản đồ 2 nguyên (hình 2.18) cho thấy khi hoàn nguyên bằng hỗn hợp (Ca + Mg) pha lỏng xuất hiện sớm hơn so với hoàn nguyên từng nguyên tố riêng biệt đồng thời áp suất của phản ứng thay đổi ở nhiệt độ thấp hơn. Từ giản đồ trạng thái Mg – Ca cho thấy ở 515 oC, Ca và Mg tạo cùng tinh, bắt đầu xuất hiện pha lỏng. Trên 716 oC trạng