Đạo hàm và vi phân của hàm một biến thực
... lúc đó là vi phân của hàm x = ϕ(t). Ta nói vi phân bậc nhất có tính bất biến đối với phép đổi biến. Ứng dụng vi phân để tính gần đúng giá trị của hàm. Từ định nghĩa vi phân ta có, với số gia ∆x ... g.df. d f g = g.df − f.dg g 2 . Tính bất biến của vi phân bậc nhất. Giả sử hàm số hợp y = g(t) là hợp của hai hàm khả vi: y = f(x) và x = ϕ(t). Lúc đó nếu xem x như biến độc lập, ta có vi phân của y theo dx là: dy ... khả vi tại x 0 và biểu thức: df(x 0 ) := f (x 0 ).∆x được gọi là vi phân bậc nhất của hàm f tại x 0 ứng với số gia ∆x của biến số. Từ định nghĩa ta có ngay vi phân của biến độc lập đúng bằng số...
Ngày tải lên: 23/10/2013, 14:20
Phép tính vi phân hàm nhiều biến.pdf
... f 2 (x, y), . . . , f p (x, y)) Các hàm f 1 , f 2 , . . . , f p : A × B → R được gọi là hàm thành phần của f. Mỗi hàm thành phần là một hàm số thực theo n + p biến số thực (x, y) = (x 1 , x 2 , . ... học năm 2005 Phiên bản đã chỉnh sửa PGS TS. Lê Hoàn Hóa Ngày 10 tháng 12 năm 2004 Phép Tính Vi Phân Hàm Nhiều Biến I - Sự liên tục 1. Không gian R n : Định nghĩa: Với x = (x 1 , x 2 , . . . , ... biên của D nếu với mọi r > 0 thì B(x, r) ∩ D = Ø và B(x, r) ∩ (R n \ D) = Ø. Nếu x là điểm biên của D thì x cũng là điểm biên của R n \ D. Tập tất cả các điểm biên của D được gọi là biên của...
Ngày tải lên: 04/08/2012, 14:24
Phép tính vi phân hàm nhiều biến (tt).pdf
... đó ∂f ∂x i : D → R biến x ∈ D thành ∂f ∂x i (x) là hàm số thực theo n biến số thực và được gọi là hàm đạo hàm riêng của f theo biến x i . Ta có thể đề cập đến đạo hàm riêng của hàm ∂f ∂x i theo biến x j ∂ ∂x j ∂f ∂x i (x) ... 3 tháng 12 năm 2004 Phép Tính Vi Phân Của Hàm Nhiều Biến (tt) 5 Công thức Taylor 5.1 Đạo hàm riêng bậc cao Định nghĩa 1 Cho D là tập mở trong R n , f : D → R. Giả sử đạo hàm riêng ∂f ∂x i (x), ... = t 2 e −t 2 . Đạo hàm ϕ (t) = 2t(1 − t 2 )e −t 2 . Đồ thị của hàm ϕ với t 0: Đồ thị của hàm f là mặt cong (S) sinh bởi đường cong đồ thị của hàm ϕ quay quanh trục Oϕ. Hàm f đạt cực đại địa...
Ngày tải lên: 04/08/2012, 14:24
Ôn thi thạc sĩ toán học tài liệu hướng dẫn phép tính vi phân hàm nhiều biến
... f 2 (x, y), . . . , f p (x, y)) Các hàm f 1 , f 2 , . . . , f p : A × B → R được gọi là hàm thành phần của f. Mỗi hàm thành phần là một hàm số thực theo n + p biến số thực (x, y) = (x 1 , x 2 , . ... học năm 2005 Phiên bản đã chỉnh sửa PGS TS. Lê Hoàn Hóa Ngày 10 tháng 12 năm 2004 Phép Tính Vi Phân Hàm Nhiều Biến I - Sự liên tục 1. Không gian R n : Định nghĩa: Với x = (x 1 , x 2 , . . . , ... cận của O R n thỏa: lim h→O R n ϕ(h) = 0 Vi phân của f tại x, ký hiệu là df(x), định bởi: df(x) = n i=1 ∂f ∂x i (x)h i = n i=1 ∂f ∂x i (x)dx i thay h i bằng dx i Tính chất:Nếu f khả vi tại...
Ngày tải lên: 21/06/2013, 09:54
Phép tính vi phân hàm nhiều biến
... nhau: ∂ 2 f ∂x∂y = ∂ 2 f ∂y∂x · C ´ AC V ´ IDU . 126 Chu . o . ng 9. Ph´ep t´ınh vi phˆan h`am nhiˆe ` ubiˆe ´ n 9.2.1 Vi phˆan cˆa ´ p1 Gia ’ su . ’ h`am w = f(x, y) kha ’ vi ta . id iˆe ’ m M(x, y), t´u . cl`ata . id ´o s ... d ˆo ´ iv´o . i ∆x v`a ∆y cu ’ asˆo ´ gia ∆f) D 1 ∆x + D 2 ∆y d u . o . . cgo . il`avi phˆan (hay vi phˆan to`an phˆa ` n ≡ hay vi phˆan th´u . nhˆa ´ t) cu ’ a h`am w = f(x, y)v`ad u . o . . ck´yhiˆe . ul`adf ... 0. 9.2.2 ´ Ap du . ng vi phˆan dˆe ’ t´ınh gˆa ` nd´ung Dˆo ´ iv´o . i∆x v`a ∆y d u ’ b´e ta c´o thˆe ’ thay xˆa ´ pxı ’ sˆo ´ gia ∆f(M)bo . ’ ivi phˆan df (M), t´u . cl`a ∆f(M) ≈ df (M) 9.2. Vi phˆan cu ’ a...
Ngày tải lên: 29/09/2013, 16:20
Phép tính vi phân hàm nhiều biến
... y k k k k k k f x y k k k k = = → + − = = → + + . 4. Tính các đạo hàm hàm riêng cấp 1 và vi phân toàn phần của các hàm sau đây a) 3 3 3z x y xy= + − b) 2 2 2 2 x y z x y − = + c) ... = + . 7. Tính đạo hàm hàm riêng của các hàm hợp sau đây a) Cho 2 sin , , u z x y x y v u v = = = . Tính , u v z z ′ ′ . b) Cho ( , ) arctg , sin , cos . x f x y x u v y u v y = = = Tính , . u ... http://kinhhoa.violet.vn 12 ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 2 2 2 3 2 2 2 y z dx x z dy x y dz 2xydxdy 1 d u 2xzdxdz 2yzdydz x y z é ù + + + + + - ê ú = ê ú ê ú - - ê ú ë û + + 9. Tính đạo hàm của các hàm...
Ngày tải lên: 16/01/2014, 17:16
Tài liệu Chương I: PHÉP TÍNH VI PHÂN HÀM NHIỀU BIẾN ppt
... miền xác ðịnh của hàm số a) b) c) d) 2 -Tính ðạo hàm riêng của hàm số e) f) g) h) a) Tính các ðạo hàm riêng tại của hàm b) T ính các ðạo hàm riêng tại ậếờ ếấ của hàm Vuihoc24h.vn ... cấp cao Cho hàm ị biến z ụ fậxờ yấề Bản thân cũng là một hàm theo ị biến xờ y nên ta có thể xét vi phân của nóề ỷếu dfậxờ yấ có vi phân thì vi phân ðó ðýợc gọi là vi phân cấp 2 của fậxờ yấờ ... z’ y của hàm z = f(x,y) ðýợc gọi là các ðạo hàm riêng cấp ữề Ðạo hàm riêng cấp ị của một hàm là ðạo hàm riêng ậcấp 1) của ðạo hàm riêng cấp ữ của hàm ðóề ổàm ị biến z = f(x, y) có bốn ðạo hàm...
Ngày tải lên: 23/02/2014, 19:20
Phép tính vi phân hàm một biến
... 8 Ph´ep t´ınh vi phˆan h`am mˆo . t biˆe ´ n 8.1 D - a . oh`am 61 8.1.1 D - a . o h`am cˆa ´ p1 61 8.1.2 D - a . o h`am cˆa ´ pcao 62 8.2 Viphˆan 75 8.2.1 Vi phˆan cˆa ´ p1 75 8.2.2 Vi phˆan cˆa ´ pcao ... f (x). H`am f(x) kha ’ vi nˆe ´ un´oc´od a . o h`am f (x)h˜u . uha . n. H`am f(x) kha ’ vi liˆen tu . c nˆe ´ ud a . o h`am f (x)tˆo ` nta . i v`a liˆen tu . c. Nˆe ´ u h`am f(x) kha ’ vi th`ı n´o liˆen ... 73 liˆen tu . c v`a kha ’ vi ta . idiˆe ’ m x = x 0 ? (D S. a =3x 2 0 , b = −2x 3 0 ). 54. X´ac d i . nh α v`a β dˆe ’ c´ac h`am sau: a) liˆen tu . c kh˘a ´ pno . i; b) kha ’ vi kh˘a ´ pno . inˆe ´ u 1)...
Ngày tải lên: 29/09/2013, 16:20
chuong 1. Bo tro phep tinh vi phan va tich phan.ppt
... = = ayLim axLim n n n n nyzx& nnn azLim n n = { } n n x nx)(x 1nn + { } n n x nMx:0M n <> 1.1. Hàm 1 biến số: 1.1.1. Các khái niệm: a) Định nghĩa hàm 1 biến số: Tập xác định: D f = X Tập giá trị đồ thị: đồ thị: RX )x(fyx RX:f = { ... cÊp 2 Ch¬ng 1. Bæ trî phÐp tÝnh vi ph©n & tÝch ph©n hµm 1 biÕn sè 1.1.2. Các phép toán trên hàm số: Hàm hợp f o g: (f o g) (x) = f(g(x)) c) Ngược hàm: định lý: y = f(x) tăng (giảm) ... h¹n: axkhiVCB)x(g )x(gL)x(fL)x(fLim ax → +=⇔=∃ → 1.4. Đạo hàm 1.4.1. Các khái niệm a) Định nghĩa f có đạo hàm trên (a,b) f có đạo hàm trên [a, b] ý nghĩa hình học của đạo hàm )x('f: x )x(f)xx(f limhh)x(Cf o x o + + = + + 00 0 1 )x('f: x )x(f)xx(f limhh)x(Cf x o = + 0 00 0 1 )x('f: x )x(f)xx(f limhh)x(Cf x o...
Ngày tải lên: 07/09/2012, 12:45
Bạn có muốn tìm thêm với từ khóa: