1. Trang chủ
  2. » Giáo án - Bài giảng

Các vấn đề về cực trị của hàm số file word có lời giải chi tiết

29 20 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 29
Dung lượng 1,21 MB

Nội dung

https://www.facebook.com/groups/TruongHocChui FanPage: Adoba – Tài Liệu luyện thi số Việt Nam Chủ đề 1.2 CỰC TRỊ CỦA HÀM SỐ A KIẾN THỨC CƠ BẢN Định nghĩa: Cho hàm số y = f ( x) xác định liên tục khoảng (a; b) (có thể a − ; b + ) điểm x0  (a; b) số f ( x) đạt cực đại x0 ➢ Nếu tồn số h  cho f ( x )  f ( x0 ) với x  ( x0 − h; x0 + h) x  x0 ta nói hàm số f ( x) đạt cực tiểu x0 Điều kiện đủ để hàm số có cực trị: Giả sử hàm số y = f ( x) liên tục K = ( x0 − h; x0 + h) có đạo hàm K K \{x0 } , với h  ➢ Nếu f ' ( x )  khoảng ( x0 − h; x0 ) f '( x)  ( x0 ; x0 + h) x0 điểm cực đại hàm số f ( x) ➢ Nếu f  ( x )  khoảng ( x0 − h; x0 ) f ( x)  ( x0 ; x0 + h) x0 điểm cực tiểu hàm số f ( x) Minh họa bảng biến thiến x f ( x ) x0 − h x0 + h x0 − + x f ( x ) x0 − h x0 + h x0 − + fCÑ f ( x) f ( x) fCT  Chú ý  Nếu hàm số y = f ( x) đạt cực đại (cực tiểu) x0 x0 gọi điểm cực đại (điểm cực tiểu) hàm số; f ( x0 ) gọi giá trị cực đại (giá trị cực tiểu) hàm số, kí hiệu fCĐ ( fCT ) , cịn điểm M ( x0 ; f ( x0 )) gọi điểm cực đại (điểm cực tiểu) đồ thị hàm số https://www.facebook.com/Adoba.com.vn/ – FanPage chuyên đề thi – tài liệu FANPAGE: ADOBA – TÀI LIỆU LUYỆN THI SỐ VIỆT NAM | SĐT: 0986772288 Đăng kí http://thichhocchui.xyz/ Zalo 0383572270 Thích Học Chui ➢ Nếu tồn số h  cho f ( x )  f ( x0 ) với x  ( x0 − h; x0 + h) x  x0 ta nói hàm https://www.facebook.com/groups/TruongHocChui FanPage: Adoba – Tài Liệu luyện thi số Việt Nam  Các điểm cực đại cực tiểu gọi chung điểm cực trị Giá trị cực đại (giá trị cực tiểu) gọi cực đại (cực tiểu) gọi chung cực trị hàm số B KỸ NĂNG CƠ BẢN Quy tắc tìm cực trị hàm số ➢ Quy tắc 1: Bước Tìm tập xác định hàm số Bước Lập bảng biến thiên Bước Từ bảng biến thiên suy điểm cực trị ➢ Quy tắc 2: Bước Tìm tập xác định hàm số Bước Tính f  ( x ) Giải phương trình f  ( x ) ký hiệu xi ( i = 1, 2,3, ) nghiệm Bước Tính f  ( x ) f  ( xi ) Bước Dựa vào dấu f  ( xi ) suy tính chất cực trị điểm xi Kỹ giải nhanh toán cực trị hàm số bậc ba y = ax + bx + cx + d ( a  ) Ta có y = 3ax + 2bx + c ➢ Đồ thị hàm số có hai điểm cực trị phương trình y = có hai nghiệm phân biệt  2c 2b  bc  b − 3ac  Khi đường thẳng qua hai điểm cực trị : y =  − x+d − 9a  9a  ➢ Bấm máy tính tìm đường thẳng qua hai điểm cực trị :  x b  x =i ax3 + bx + cx + d − ( 3ax + 2bx + c )  +  ⎯⎯ → Ai + B  y = Ax + B  9a  Hoặc sử dụng công thức y − y y 18a ➢ Khoảng cách hai điểm cực trị đồ thị hàm số bậc ba là: AB = 4e + 16e3 b − 3ac với e = a 9a https://www.facebook.com/Adoba.com.vn/ – FanPage chuyên đề thi – tài liệu FANPAGE: ADOBA – TÀI LIỆU LUYỆN THI SỐ VIỆT NAM | SĐT: 0986772288 Đăng kí http://thichhocchui.xyz/ Zalo 0383572270 Thích Học Chui Bước Tính f  ( x ) Tìm điểm f  ( x ) f  ( x ) không xác định https://www.facebook.com/groups/TruongHocChui FanPage: Adoba – Tài Liệu luyện thi số Việt Nam Kỹ giải nhanh toán cực trị hàm trùng phương Cho hàm số: y = ax + bx + c ( a  ) có đồ thị ( C ) x = y = 4ax + 2bx; y =   x = − b 2a  y = có nghiệm phân biệt  − b 0 2a   b   b   Khi ba điểm cực trị là: A ( 0; c ) , B  − − ; −  , C  − ; −  với  = b2 − 4ac 2a 4a  2a 4a    Độ dài đoạn thẳng: AB = AC = b4 b b − , BC = − 16a 2a 2a Các kết cần ghi nhớ: ➢ ABC vuông cân  BC = AB + AC −  b4  2b b  b4 b b  b3 b3 = 2 −  + =  + =  +1 =    2 a 2a  8a  8a  16a 2a  16a 2a ➢ ABC  BC = AB −  2b b4 b b4 3b b  b3 b3 = −  + =  + =  +3=   a 16a 2a 16a 2a 2a  8a 8a  ➢ BAC =  , ta có: cos  = ➢ SABC = b2 4a − b3 + 8a  8a  tan = − 3 b − 8a b b 2a ➢ Bán kính đường trịn ngoại tiếp ABC R = ➢ Bán kính đường trịn nội tiếp ABC r = b − 8a 8ab b2 4a − b 2a b4 b b − + − 16a 2a 2a = b2 a + 16a − 2ab3 https://www.facebook.com/Adoba.com.vn/ – FanPage chuyên đề thi – tài liệu FANPAGE: ADOBA – TÀI LIỆU LUYỆN THI SỐ VIỆT NAM | SĐT: 0986772288 Đăng kí http://thichhocchui.xyz/ Zalo 0383572270 Thích Học Chui ( C ) có ba điểm cực trị https://www.facebook.com/groups/TruongHocChui FanPage: Adoba – Tài Liệu luyện thi số Việt Nam 2   2   ➢ Phương trình đường trịn ngoại tiếp ABC là: x + y −  − + c y + c −  =  b 4a   b 4a  C KỸ NĂNG SỬ DỤNG MÁY TÍNH Ví dụ 1: Tìm đường thẳng qua hai điểm cực trị đồ thị hàm số: y = x3 + 3x2 − x + Bấm máy tính: MODE Ví dụ 2: Tìm đường thẳng qua hai điểm cực trị ( có ) đồ thị hàm số: y = x − x + m2 x + m Bấm máy tính: MODE  x  x =i , m= A=1000 1003000 1999994 x3 − 3x + m2 x + m − ( 3x − x + m2 )  −  ⎯⎯⎯⎯⎯ → + i 3  3 Ta có: 1003000 1999994 1000000 + 3000 2000000 − m + 3m m − + i= + i= + x 3 3 3 Vậy đường thẳng cần tìm: y = 2m − m2 + 3m x+ 3 BÀI CỰC TRỊ- VẬN DỤNG CAO TÌM ĐIỀU KIỆN ĐỂ HÀM SỐ CĨ CỰC TRỊ THỎA MÃN ĐIỀU KIỆN CHO TRƯỚC Phương pháp Tiến hành theo bước sau: Bước Tìm tập xác định hàm số f Bước Tính f '(x) Bước 3.Sử dụng định lí sau: “ Nếu hàm số f có đạo hàm liên tục (a,b) x0  (a; b) Thế điểm x điểm cực trị hàm số f đạo hàm f '(x) đổi dấu x qua x ” Bước 4.Giải yêu cầu cực trị (nếu có) Chú ý: * Nếu ta gặp biểu thức đối xứng hoành độ điểm cực trị hoành độ điểm cực trị nghiệm tam thức bậc hai ta sử dụng định lí Viét https://www.facebook.com/Adoba.com.vn/ – FanPage chuyên đề thi – tài liệu FANPAGE: ADOBA – TÀI LIỆU LUYỆN THI SỐ VIỆT NAM | SĐT: 0986772288 Đăng kí http://thichhocchui.xyz/ Zalo 0383572270 Thích Học Chui  x  x =i x3 + 3x − x + − ( 3x + x − 1)  +  ⎯⎯ → − i y = − x+ 3 3  3 https://www.facebook.com/groups/TruongHocChui FanPage: Adoba – Tài Liệu luyện thi số Việt Nam * Khi tính giá trị cực trị hàm số qua điểm cực trị ta thường dùng kết sau: Định lí 1: Cho hàm đa thức y = P ( x ) , giả sử y = ( ax + b ) P' ( x ) + h ( x ) x0 điểm cực trị hàm số giá trị cực trị hàm số là: y ( x0 ) = h ( x0 ) y = h ( x ) gọi phương trình quỹ tích điểm cực trị Chứng minh: Giả sử x0 điểm cực trị hàm số, P ( x ) hàm đa thức nên P' ( x0 ) = Định lí 2: Cho hàm phân thức hữu tỉ y = u ( x) v ( x) x0 điểm cực trị hàm số giá trị cực trị hàm số: y ( x0 ) = Và y = u' ( x ) v' ( x ) u' ( x0 ) v' ( x0 ) phương trình quỹ tích điểm cực trị Chứng minh: Ta có y' = u' ( x ) v ( x ) − v' ( x ) u ( x ) v2 ( x )  y' =  u' ( x ) v ( x ) − v' ( x ) u ( x ) = phương trình ()  u' ( x0 ) v' ( x0 ) = u ( x0 ) v ( x0 ) () Giả sử x0 điểm cực trị hàm số x0 nghiệm = y ( x0 ) Bài toán 01: TÌM ĐIỀU KIỆN ĐỂ HÀM SỐ CĨ CỰC TRỊ CÙNG DẤU, TRÁI DẤU Phương pháp Giả sử y' = ax2 + bx + c  Hàm số có hai điểm cực trị dương  y' = có hai nghiệm dương phân biệt :  x1  x2  a  0,   0, x1 + x  0, x1 x   Hàm số có hai điểm cực trị âm  y' = có hai nghiệm âm phân biệt x1  x   a  0,   0, x1 + x  0, x1 x   Hàm số có hai điểm cực trị trái dấu  y' = có hai nghiệm trái dấu x1   x2  a  0, x1 x2  https://www.facebook.com/Adoba.com.vn/ – FanPage chuyên đề thi – tài liệu FANPAGE: ADOBA – TÀI LIỆU LUYỆN THI SỐ VIỆT NAM | SĐT: 0986772288 Đăng kí http://thichhocchui.xyz/ Zalo 0383572270 Thích Học Chui  y ( x0 ) = ( ax0 + b ) P' ( x0 ) + h ( x0 ) = h ( x0 ) (đpcm) https://www.facebook.com/groups/TruongHocChui FanPage: Adoba – Tài Liệu luyện thi số Việt Nam  Hàm số có hai cực trị có giá trị cực trị dấu  y1 y  Ví dụ : Định m để hàm số y = x3 − 3mx2 + 3(m2 − 1)x − m có cực trị trái dấu Lời giải Hàm số cho xác định D = ¡ Ta có: y' = 3x2 − 6mx + 3(m2 − 1)  9(m − 1)   −1  m  Vậy, với −1  m  hàm số có cực trị trái dấu Bài tốn 02: TÌM ĐIỀU KIỆN ĐỂ HÀM SỐ CĨ CỰC ĐẠI, CỰC TIỂU NẰM VỀ MỘT PHÍA, HAI PHÍA CỦA HỆ TRỤC TỌA ĐỘ Phương pháp Giả sử y' = ax2 + bx + c  Hàm số có hai cực trị nằm phía tung  y1 y   Hàm số có hai cực trị nằm phía trục tung  x1 x2   Hàm số có hai cực trị nằm trục hoành  y1 + y  0, y1 y   Hàm số có hai cực trị nằm trục hoành  y1 + y  0, y1 y   Hàm số có cực trị tiếp xúc với trục hoành  y1 y = Các ví dụ Ví dụ : Cho hàm số y = x3 + 3x2 + mx + m – ( m tham số) có đồ thị ( Cm ) Xác định m để ( Cm ) có điểm cực đại cực tiểu nằm hai phía trục hồnh Lời giải Hàm số cho xác định D = ¡ Phương trình hồnh độ giao điểm ( Cm ) trục hoành: x3 + 3x + mx + m – = (1)  x = −1 g(x) = x2 + 2x + m − = ( ) https://www.facebook.com/Adoba.com.vn/ – FanPage chuyên đề thi – tài liệu FANPAGE: ADOBA – TÀI LIỆU LUYỆN THI SỐ VIỆT NAM | SĐT: 0986772288 Đăng kí http://thichhocchui.xyz/ Zalo 0383572270 Thích Học Chui Hàm số có cực trị trái dấu y' = có hai nghiệm phân biệt x1 ,x thỏa mãn x1   x2 https://www.facebook.com/groups/TruongHocChui FanPage: Adoba – Tài Liệu luyện thi số Việt Nam ( Cm ) có điểm cực đại cực tiểu nằm hai phía trục hồnh (1) có nghiệm phân biệt   tức phương trình ( ) có nghiệm phân biệt khác −1   = − m  g( −1) = m −  m3 Vậy, với m  hàm số có điểm cực đại cực tiểu nằm hai phía trục hồnh ( Cm ) có điểm cực đại, cực tiểu nằm phía trục tung Lời giải Hàm số cho xác định D = ¡ Ta có: y' = x2 − 2mx + 2m − Đồ thị ( Cm ) có điểm cực đại cực tiểu nằm phía trục tung  y = có nghiệm phân   biệt dấu   = m − 2m +  2m −  Vậy, với m    m    m  hàm số có điểm cực đại, cực tiểu nằm phía trục tung Ví dụ : Cho hàm số y = −x3 + (2m + 1)x2 − (m − 3m + 2)x − ( m tham số) có đồ thị ( Cm ) Xác định m để ( Cm ) có điểm cực đại cực tiểu nằm hai phía trục tung Lời giải Hàm số cho xác định D = ¡ Ta có: y' = −x2 + ( 2m + 1) x − (m − 3m + 2) Đồ thị ( Cm ) có điểm cực đại cực tiểu nằm hai phía trục tung  y = có nghiệm trái dấu  3(m − 3m + 2)    m  Vậy, với  m  có điểm cực đại cực tiểu nằm hai phía trục tung Bài tốn 03: TÌM ĐIỀU KIỆN ĐỂ HÀM SỐ CÓ CỰC ĐẠI, CỰC TIỂU NẰM VỀ MỘT PHÍA, HAI PHÍA CỦA ĐƯỜNG THẲNG CHO TRƯỚC Phương pháp https://www.facebook.com/Adoba.com.vn/ – FanPage chuyên đề thi – tài liệu FANPAGE: ADOBA – TÀI LIỆU LUYỆN THI SỐ VIỆT NAM | SĐT: 0986772288 Đăng kí http://thichhocchui.xyz/ Zalo 0383572270 Thích Học Chui Ví dụ : Cho hàm số y = x3 − mx2 + (2m − 1)x − ( m tham số) có đồ thị ( Cm ) Xác định m để https://www.facebook.com/groups/TruongHocChui FanPage: Adoba – Tài Liệu luyện thi số Việt Nam Tìm điều kiện để đồ thị hàm số có hai điểm cực trị A, B đối xứng qua đường thẳng d cho trướC – Tìm điều kiện để hàm số có cực đại, cực tiểu – Viết phương trình đường thẳng  qua điểm cực đại, cực tiểu – Gọi I trung điểm AB  ⊥ d I  d – Giải điều kiện:  – Tìm điều kiện để hàm số có cực đại, cực tiểu – Giải điều kiện: d(A,d) = d(B,d) Tìm điều kiện để đồ thị hàm số có hai điểm cực trị A, B khoảng cách hai điểm A, B lớn (nhỏ nhất) – Tìm điều kiện để hàm số có cực đại, cực tiểu – Tìm toạ độ điểm cực trị A, B (có thể dùng phương trình đường thẳng qua hai điểm cực trị) – Tính AB Dùng phương pháp hàm số để tìm GTLN (GTNN) AB Cực trị hàm đa thức bậc 3: 1.1 Hàm số: y = ax3 + bx2 + cx + d ( a  ) 1.2 Đạo hàm: y' = 3ax2 + 2bx + c 1.3 Điều kiện tồn cực trị Hàm số có cực đại, cực tiểu  phương trình y = có nghiệm phân biệt Hoành độ x1 ,x điểm cực trị nghiệm phương trình y = 1.4 Kỹ tính nhanh cực trị 1.5 Giả sử  ' = b2 − 3ac  y' = có nghiệm phân biệt x1 ,x với x1,2 = − b  b − 3ac hàm số đạt cực trị x1 ,x 3a Theo định nghĩa ta có cực trị hàm số là:     2 y1 = y ( x1 ) = y  −b − b − 3ac  ; y2 = y ( x2 ) = y  −b + b − 3ac  3a 3a     https://www.facebook.com/Adoba.com.vn/ – FanPage chuyên đề thi – tài liệu FANPAGE: ADOBA – TÀI LIỆU LUYỆN THI SỐ VIỆT NAM | SĐT: 0986772288 Đăng kí http://thichhocchui.xyz/ Zalo 0383572270 Thích Học Chui Tìm điều kiện để đồ thị hàm số có hai điểm cực trị A, B cách đường thẳng d cho trướC https://www.facebook.com/groups/TruongHocChui FanPage: Adoba – Tài Liệu luyện thi số Việt Nam Để viết phương trình đường thẳng qua điểm cực đại, cực tiểu, ta sử dụng phương pháp tách đạo hàm (3 ) ( 2  Bước 1: Thực phép chia y cho y' ta có: y = x + b y'+  c − b  x + d − bc 9a 3 3a  ( ) 9a )  b2  x + d − bc 2   y1 = y ( x1 ) = r ( x1 ) =  c − 3 3a  9a nên   y = y ( x ) = r ( x ) =  c − b2  x + d − bc   2  3 3a  9a  y' ( x1 ) = Bước 2: Do   y' ( x2 ) = ( ) Hệ quả: Đường thẳng qua cực đại, cực tiểu có phương trình là: y = r ( x ) Đối với hàm số tổng quát : y = ax3 + bx2 + cx + d (a  0) đường thẳng qua cực đại, cực tiểu có  3  3a  ( phương trình: y =  c − b  x + d − bc 9a ) Chú ý: Gọi  góc hai đường thẳng d1 : y = k1x + b1 , d2 : y = k x + b2 tan  = k1 − k + k1k Gọi k hệ số góc đường thẳng qua điểm cực đại, cực tiểu Tìm điều kiện để đường thẳng qua điểm cực đại, cực tiểu song song (vng góc) với đường thẳng d : y = px + q – Tìm điều kiện để hàm số có cực đại, cực tiểu – Viết phương trình đường thẳng qua điểm cực đại, cực tiểu p – Giải điều kiện: k = p (hoặc k = − ) Tìm điều kiện để đường thẳng qua điểm cực đại, cực tiểu tạo với đường thẳng d : y = px + q góc  – Tìm điều kiện để hàm số có cực đại, cực tiểu – Viết phương trình đường thẳng qua điểm cực đại, cực tiểu – Giải điều kiện: k−p = tan  (Đặc biệt d  Ox, giải điều kiện: k = tan  ) + kp Các ví dụ https://www.facebook.com/Adoba.com.vn/ – FanPage chuyên đề thi – tài liệu FANPAGE: ADOBA – TÀI LIỆU LUYỆN THI SỐ VIỆT NAM | SĐT: 0986772288 Đăng kí http://thichhocchui.xyz/ Zalo 0383572270 Thích Học Chui hay y = y'.q(x) + r(x) với bậc r ( x ) = https://www.facebook.com/groups/TruongHocChui FanPage: Adoba – Tài Liệu luyện thi số Việt Nam Ví dụ : Cho hàm số y = −x3 + 3mx2 − 3m − ( m tham số) có đồ thị ( Cm ) Với giá trị m đồ thị hàm số có điểm cực đại điểm cực tiểu đối xứng với qua đường thẳng d : x + 8y − 74 = Lời giải Hàm số cho xác định D = ¡ Ta có: y' = −3x2 + 6mx Đồ thị ( Cm ) có điểm cực đại cực tiểu  y' = có nghiệm phân biệt x1 ; x2  m  Trung điểm I AB có toạ độ: I(m; 2m − 3m − 1) ur Đường thẳng d : x + 8y − 74 = có VTCP u = (8; −1) m + 8(2m − 3m − 1) − 74 = I  d A B đối xứng với qua d     uuur ur AB ⊥ d AB.u = m=2 Vậy, với m = đồ thị hàm số có điểm cực đại điểm cực tiểu đối xứng với qua đường thẳng d : x + 8y − 74 = Chú ý: Bài tốn u cầu sau: ‘’ Cho hàm số y = −x3 + 3mx2 − 3m − có đồ thị ( Cm ) Tìm đồ thị hàm số điểm cực đại điểm cực tiểu đối xứng với qua đường thẳng d : x + y − 74 = ’’ Ví dụ : Cho hàm số y = x3 − 3x2 − mx + ( m tham số) có đồ thị ( Cm ) Xác định m để ( Cm ) có điểm cực đại cực tiểu cách đường thẳng y = x − Lời giải Hàm số cho xác định D = ¡ Ta có: y' = 3x2 − 6x − m Đồ thị ( Cm ) có điểm cực đại cực tiểu  y' = có nghiệm phân biệt x1 ; x   ' = + 3m   m  −3 Gọi hai điểm cực trị A ( x1 ; y1 ) ; B ( x2 ; y2 ) 10 https://www.facebook.com/Adoba.com.vn/ – FanPage chuyên đề thi – tài liệu FANPAGE: ADOBA – TÀI LIỆU LUYỆN THI SỐ VIỆT NAM | SĐT: 0986772288 Đăng kí http://thichhocchui.xyz/ Zalo 0383572270 Thích Học Chui uuur Khi điểm cực trị là: A(0; −3m − 1), B(2m; 4m − 3m − 1)  AB(2m; 4m ) https://www.facebook.com/groups/TruongHocChui FanPage: Adoba – Tài Liệu luyện thi số Việt Nam Tìm điều kiện để hàm số có cực đại, cực tiểu hoành độ điểm cực trị thoả hệ thức cho trướC – Tìm điều kiện để hàm số có cực đại, cực tiểu – Phân tích hệ thức để áp dụng định lí Vi-et Tìm điều kiện để hàm số có cực trị khoảng K1 = ( −; ) K = (; +) y' = f(x) = 3ax2 + 2bx + c Hàm số có cực trị thuộc K1 = ( −; ) Hàm số có cực trị thuộc K = (; +) Hàm số có cực trị khoảng ( −; ) Hàm số có cực trị khoảng (; +)  f(x) = có nghiệm ( −; )  f(x) = có nghiệm (; +)  g(t) = có nghiệm t <  g(t) = có nghiệm t >  '    P  S  P    '    P  S  P   Tìm điều kiện để hàm số có hai cực trị x1 ,x thoả: b) x1  x2   a) x1    x2 c)   x1  x2 y' = f(x) = 3ax2 + 2bx + c Đặt t = x −  , đó: y' = g(t) = 3at + 2(3a + b)t + 3a2 + 2b + c a) Hàm số có hai cực trị x1 ,x thoả x1    x2  g(t) = có hai nghiệm t1 , t thoả t1   t  P  b) Hàm số có hai cực trị x1 ,x thoả x1  x2    '    g(t) = có hai nghiệm t1 , t thoả t1  t   S  P   c) Hàm số có hai cực trị x1 , x thoả   x1  x2 15 https://www.facebook.com/Adoba.com.vn/ – FanPage chuyên đề thi – tài liệu FANPAGE: ADOBA – TÀI LIỆU LUYỆN THI SỐ VIỆT NAM | SĐT: 0986772288 Đăng kí http://thichhocchui.xyz/ Zalo 0383572270 Thích Học Chui Đặt t = x −  , đó: y' = g(t) = 3at + 2(3a + b)t + 3a2 + 2b + c https://www.facebook.com/groups/TruongHocChui FanPage: Adoba – Tài Liệu luyện thi số Việt Nam  g(t) = có hai nghiệm t1 , t thoả  t1  t  '    S  P   Các ví dụ Ví dụ : Cho hàm số y = (m + 2)x3 + 3x2 + mx − ( m tham số) có đồ thị ( Cm ) Tìm giá trị m để điểm cực đại, cực tiểu đồ thị hàm số cho có hồnh độ số dương Hàm số cho xác định D = ¡ Ta có: y' = 3(m + 2)x2 + 6x + m Đồ thị ( Cm ) có điểm cực đại, cực tiểu đồ thị hàm số cho có hồnh độ số dương y' = có nghiệm dương phân biệt a = (m + 2)    ' = −m − 2m +   ' = − 3m(m + 2)  −3  m      m  P =  m   m   −3  m  −2 0 3(m + 2)  m +  m  −2     −3 S = 0  m+2 Vậy, với −3  m  −2 đồ thị hàm số cho có điểm cực đại, cực tiểu có hồnh độ số dương Ví dụ : Cho hàm số y = x3 − 3(m + 1)x2 + 9x − m ( m tham số) có đồ thị ( Cm ) Xác định m để hàm số cho đạt cực trị x1 ,x cho x1 − x2  Lời giải Hàm số cho xác định D = ¡ Ta có: y' = 3x2 − 6(m + 1)x + Đồ thị ( Cm ) có điểm cực đại cực tiểu  y' = có nghiệm phân biệt x1 ; x2   ' = (m + 1)2 −   m  −1 + m  −1 − Theo định lý Viet ta có x1 + x2 = 2(m + 1), x1x = Khi đó: x1 − x2   ( x1 + x2 ) − 4x1x2   ( m + 1) − 12  2  (m + 1)2   −3  m  16 https://www.facebook.com/Adoba.com.vn/ – FanPage chuyên đề thi – tài liệu FANPAGE: ADOBA – TÀI LIỆU LUYỆN THI SỐ VIỆT NAM | SĐT: 0986772288 Đăng kí http://thichhocchui.xyz/ Zalo 0383572270 Thích Học Chui Lời giải https://www.facebook.com/groups/TruongHocChui FanPage: Adoba – Tài Liệu luyện thi số Việt Nam Vậy, −3  m  −1 − −1 +  m  giá trị cần tìm Ví dụ : Cho hàm số y = x3 + (1 − 2m)x2 + (2 − m)x + m + ( m tham số) có đồ thị ( Cm ) Xác định m để hàm số cho đạt cực trị x1 , x cho x1 − x2  Lời giải Hàm số cho xác định D = ¡ Đồ thị ( Cm ) có điểm cực đại cực tiểu  y' = có nghiệm phân biệt x1 ; x   ' = (1 − 2m)2 − 3(2 − m) = 4m − m −   m  −1 m  Theo định lý Viet ta có x1 + x2 = − x1 − x2  2(1 − 2m) 2−m ,x1x2 = 3 1 2  ( x1 − x2 ) = ( x1 + x2 ) − 4x1x2   4(1 − 2m)2 − 4(2 − m)   16m − 12m −   m  Vậy, m  −1 m  − 29 + 29 m  8 + 29 giá trị cần tìm Ví dụ : Cho hàm số: y = x3 + ( m − ) x2 + ( 5m + ) x + 3m + Với giá trị m hàm số đạt cực trị tại điểm có hồnh độ x1 ,x cho x1   x2 Lời giải Hàm số cho xác định liên tục ¡ Ta có: y' = x2 + ( m − ) x + ( 5m + ) y' =  x2 + ( m − ) x + ( 5m + ) = () Đồ thị hàm số cho có cực trị phương trình y' = có hai nghiệm phân biệt, nghĩa phải có :  ' = ( m − ) − ( 5m + )   m − 9m   m  m  Khi m  m  đồ thị cho có cực trị điểm có hồnh độ x1 ,x hai nghiệm phương trình () 17 https://www.facebook.com/Adoba.com.vn/ – FanPage chuyên đề thi – tài liệu FANPAGE: ADOBA – TÀI LIỆU LUYỆN THI SỐ VIỆT NAM | SĐT: 0986772288 Đăng kí http://thichhocchui.xyz/ Zalo 0383572270 Thích Học Chui Ta có: y' = 3x2 + 2(1 − 2m)x + − m https://www.facebook.com/groups/TruongHocChui FanPage: Adoba – Tài Liệu luyện thi số Việt Nam Để thỏa mãn điều kiện x1   x2 ta cần có : ( x1 − )( x2 − )   x1.x2 − ( x1 + x2 ) +  x1 + x2 = 2(2 − m) x1x2 = 5m + Theo định lý viét, ta có  Nên có 5m + − 2.2(2 − m) +   9m   m  Vậy, m  thỏa mãn đề cực tiểu cực trị x1 , x thỏa mãn 3x12 + 2x22 = 77 Lời giải Hàm số cho xác định liên tục ¡ Ta có: y' = 3x2 − 6x + 3m Hàm số có cực đại cực tiểu y' = có hai nghiệm phân biệt đổi dấu qua nghiệm tức phải có  ' = − 9m   m   b x + x2 = − =   a Áp dụng Viet cho x1 , x ta có  c x x = = m   a 3x12 + 2x22 = 77  ( x1 + x2 ) − 4x1x2 + x12 = 77  2.22 − 4m + x12 = 77  x12 = 69 + 4m (1) Mà x1 nghiệm phương trình y' =  3x12 − 6x1 + 3m =  x12 = 2x1 − m ( ) Từ (1) ( ) ta 69 + 4m = 2x1 − m  x1 = 69 + 5m 2  69 + 5m   = 69 + 4m  25m + 674m + 4485 =   Thay vào (1) ta được:   m = −15 m = − 299 thỏa điều kiện m  25 Vậy, m = −15 m = − 18 299 thỏa yêu cầu toán 25 https://www.facebook.com/Adoba.com.vn/ – FanPage chuyên đề thi – tài liệu FANPAGE: ADOBA – TÀI LIỆU LUYỆN THI SỐ VIỆT NAM | SĐT: 0986772288 Đăng kí http://thichhocchui.xyz/ Zalo 0383572270 Thích Học Chui Ví dụ : Cho hàm số y = x3 − 3x2 + 3mx + Tìm giá trị tham số thực m cho hàm số có cực đại, https://www.facebook.com/groups/TruongHocChui FanPage: Adoba – Tài Liệu luyện thi số Việt Nam Ví dụ : Cho hàm số: y = x3 + (1 − 2m)x2 + (2 − m)x + m + Với giá trị m để hàm số có điểm cực trị có hồnh độ thuộc khoảng ( −2; 0) Lời giải Hàm số cho xác định liên tục ¡ Ta có: y = 3x2 + 2(1 − 2m)x + − m y =  g(x) = 3x2 + 2(1 − 2m)x + − m = () −2  x1  x2   ( −2; 0)   −2  x1   x  x  −2  x   (1) (2) (3) 4m − m −    ' = 4m − m −  −2  2m −   x1 + x2   10 0 −2     −  m  −1 Th1: (1)    4(2m − 1) − m + 0 ( x + )( x + )  4 + 3   x1x2  2 − m   4m − m −    ' = 4m − m −  m    g ( ) = − m    2m −  −2 m2 Th2: (2)   ( x1 + ) + ( x + )     − m ( 2m − 1) ( x1 + )( x2 + )   + +40  4m − m −    ' = 4m − m −  3m +    g ( −2 ) = 10 + 6m    2m −   −  m  −1 Th3: (3)   x1 + x2   x x  2 − m   0    Vậy, m  − ; −1   2; + ) giá trị cần tìm   TÌM ĐIỀU KIỆN ĐỂ HÀM SỐ CĨ CỰC TRỊ THỎA MÃN TÍNH CHẤT HÌNH HỌC Bài tốn 01: TÌM ĐIỀU KIỆN ĐỂ HÀM SỐ CĨ CỰC ĐẠI, CỰC TIỂU CÙNG ĐIỂM K TẠO THÀNH TAM GIÁC THỎA MÃN TÍNH CHẤT NÀO ĐĨ https://www.facebook.com/Adoba.com.vn/ – FanPage chuyên đề thi – tài liệu 19 FANPAGE: ADOBA – TÀI LIỆU LUYỆN THI SỐ VIỆT NAM | SĐT: 0986772288 Đăng kí http://thichhocchui.xyz/ Zalo 0383572270 Thích Học Chui Hàm số có cực trị thuộc ( −2; 0)  () có nghiệm phân biệt x1 , x có nghiệm thuộc https://www.facebook.com/groups/TruongHocChui FanPage: Adoba – Tài Liệu luyện thi số Việt Nam Phương pháp Tìm điều kiện để đường thẳng qua điểm cực đại, cực tiểu cắt hai trục Ox, Oy hai điểm A, B cho IAB có diện tích S cho trước (với I điểm cho trước) – Tìm điều kiện để hàm số có cực đại, cực tiểu – Viết phương trình đường thẳng  qua điểm cực đại, cực tiểu – Tìm giao điểm A, B  với trục Ox, Oy Tìm điều kiện để đồ thị hàm số có hai điểm cực trị A, B cho IAB có diện tích S cho trước (với I điểm cho trước) – Tìm điều kiện để hàm số có cực đại, cực tiểu – Viết phương trình đường thẳng  qua điểm cực đại, cực tiểu – Giải điều kiện S IAB = S Tìm điều kiện để đồ thị hàm số có điểm cực trị tạo thành tam giác vng cân tam giác – Tìm điều kiện để phương trình y = có nghiệm phân biệt – Tìm toạ độ điểm cực trị A, B, C Lập luận ABC cân A uuur uuur – Giải điều kiện: ABC vuông A  AB.AC = ; ABC  AB = BC Tìm điều kiện để đồ thị hàm số có điểm cực trị tạo thành tam giác có diện tích S cho trướC – Tìm điều kiện để phương trình y = có nghiệm phân biệt – Tìm toạ độ điểm cực trị A, B, C Lập luận ABC cân A – Kẻ đường cao AH – Giải điều kiện: S = SABC = AH.BC Ví dụ 1 Tìm tham số thực m để hàm số: y = x4 − ( m + 1) x2 + m (1) có cực trị A,B,C cho: OA = BC , O gốc tọa độ , A cực trị thuộc trục tung, B,C điểm cực trị lại Đề thi Đại học khối B – năm 2011 Cho hàm số y = x4 − 2(m + 1)x2 + m (1) ,với m tham số thựC Tìm m để đồ thị hàm số (1) có ba điểm cực trị tạo thành ba đỉnh tam giác vuông 20 https://www.facebook.com/Adoba.com.vn/ – FanPage chuyên đề thi – tài liệu FANPAGE: ADOBA – TÀI LIỆU LUYỆN THI SỐ VIỆT NAM | SĐT: 0986772288 Đăng kí http://thichhocchui.xyz/ Zalo 0383572270 Thích Học Chui – Giải điều kiện S IAB = S https://www.facebook.com/groups/TruongHocChui FanPage: Adoba – Tài Liệu luyện thi số Việt Nam Đề thi Đại học khối A,A1 – năm 2012 Cho hàm số y = x3 − 3mx2 + 3m (1) , m tham số thựC Tìm m để đồ thị hàm số (1) có hai điểm cực trị A B cho tam giác OAB có diện tích 48 Đề thi Đại học khối B– năm 2012 Lời giải TXĐ: D = ¡ Hàm số có cực trị y' = đổi dấu lần qua nghiệm x hay x2 = m + có nghiệm phân biệt khác  m +  tức m  −1 Khi đồ thị hàm số có cực trị ( ) ( A ( 0; m ) , B − m + 1; −m − m − , C m + 1; −m − m − ) Theo toán, ta có: OA = BC  m = ( m + 1)  m =  2 thỏa m  −1 TXĐ: D = ¡ Đạo hàm y' = 4  x3 – ( m +  1) x y' =  4x3 – ( m +  1) x =  0  x = 0,x2 = ( m + 1) Hàm số có cực trị điều kiện cần y' = có nghiệm phân biệt Điều xảy m +   m  −1 ( )( ) Khi y' = 4x x − m + x + m + đổi dấu qua điểm x = 0,x = − m + 1,x = m + nên hàm số có cực trị điểm Với m  −1 đồ thị hàm số có điểm cực trị : ( ) ( ) ( A 0;  m  , B −  m +  1; –2m – ,  C ) m +  1; –2m – Cách 1: Nhận xét: A  Oy , B C đối xứng qua Oy nên tam ABC cân A tức AB = AC nên tam giác vng cân A Gọi M trung điểm BC  M ( 0; −2m – 1) 21 https://www.facebook.com/Adoba.com.vn/ – FanPage chuyên đề thi – tài liệu FANPAGE: ADOBA – TÀI LIỆU LUYỆN THI SỐ VIỆT NAM | SĐT: 0986772288 Đăng kí http://thichhocchui.xyz/ Zalo 0383572270 Thích Học Chui y' = 4x3 − ( m − 1) x  y' =  x = hay x2 = m + https://www.facebook.com/groups/TruongHocChui FanPage: Adoba – Tài Liệu luyện thi số Việt Nam Do để tam giác ABC vng cân  BC = 2AM (đường trung tuyến nửa cạnh ( ) huyền)  m + = m + 2m + = ( m + 1)  = ( m + 1) m + = ( m + 1) 2  = ( m + 1)  m = ( m  −1) Cách 2: ABC vng cân Ta có: AB2 = AC2 = ( m + 1) + ( m + 1) BC2 = ( m + 1) m + =  m = −1 2AB2 = BC2  (m + 1)4 = m +    m + = m = So với điều kiện m  −1 , m cần tìm m = ( ) Cách 3: ABC vuông cân  AB.AC =  − ( m + 1) + −2m − − m =  m +4m +6m +3m =  m = m = −1 (loại) Cách 4: ( ·uuur uuur ) Sử dụng góc ABC vng cân  cos AB, BC = 450 , từ tìm m = Cách 1: Ta có: y' = 3x2 – 6mx Hàm số có cực trị y' = có nghiệm phân biệt ( m  ) đổi dấu qua nghiệm x = x = 2m ( ) ( Khi hàm số có hai điểm cực trị A 0; 3m ,B 2m; −m ) Nhận xét: A thuộc Oy nên OA = yA = 3m ,d  B,OA  = m S ABC = 48  3m 2m = 48  m = 16  m = 2 thỏa điều kiện toán Cách 2: Để hàm số có hai cực trị y' = có nghiệm phân biệt đổi dấu qua nghiệm, nghĩa phải có:   y'   36m   m  Với m  hàm số có cực đại A ( x1 ; y1 ) B ( x2 ; y2 ) 22 https://www.facebook.com/Adoba.com.vn/ – FanPage chuyên đề thi – tài liệu FANPAGE: ADOBA – TÀI LIỆU LUYỆN THI SỐ VIỆT NAM | SĐT: 0986772288 Đăng kí http://thichhocchui.xyz/ Zalo 0383572270 Thích Học Chui Theo định lý pitago ta có: https://www.facebook.com/groups/TruongHocChui FanPage: Adoba – Tài Liệu luyện thi số Việt Nam Trong đó: y' ( x1 ) = y' ( x2 ) = y1 = 2m x1 + 3m , y2 = 2m2 x1 + 3m ( x2 − x1 ) + ( y2 − y1 )  ( x2 − x1 ) Hay (1 + 4m ) ( 2m )2 −3m 4m + −3m 4m + = 96  = 96 ( x2 + x1 )2 − 4x1x2 −3m = 96 −3m = 96  m = 16  m = 2 Ví dụ 2.Cho hàm số: y = x2 − 2mx + m (1) Tìm tham số m để đồ thị hàm số (1) có điểm cực đại x+m điểm cực tiểu đồng thời: Đường thẳng qua hai điểm tạo với trục tọa độ tam giác có diện tích ; Cùng với gốc tọa độ tạo thành tam giác vuông O Lời giải TXĐ: D = ¡ \−m Hàm số có có điểm cực đại điểm cực tiểu phương trình x2 + 2mx − 2m − m = có hai nghiệm phân biệt khác −m tức m  − m  Phương trình đường thẳng qua hai cực trị : y = 2x − m , theo tốn ta có: A ( m; ) B ( 0; −2m ) SAOB = OA.OB  m = 2 m  − m  phương trình đường thẳng qua điểm cực đại C ( x1 ; y1 ) cực tiểu D ( x2 ; y2 ) : y = 2x − m , C ( x1 ; 2x1 − m ) D ( x2 ; 2x2 − m ) Tam giác OCD vuông O uuur uuur OC.OD = tức 5x1x2 − 2m ( x1 + x2 ) + m = () Áp dụng định lý vi – ét x1 + x2 = −2m; x1x2 = −2m2 − m , () trở thành 5m ( m + 1) =  m = −1 m = Đối chiếu điều kiện, ta thấy m = −1 thỏA 23 https://www.facebook.com/Adoba.com.vn/ – FanPage chuyên đề thi – tài liệu FANPAGE: ADOBA – TÀI LIỆU LUYỆN THI SỐ VIỆT NAM | SĐT: 0986772288 Đăng kí http://thichhocchui.xyz/ Zalo 0383572270 Thích Học Chui S OAB = 48  https://www.facebook.com/groups/TruongHocChui FanPage: Adoba – Tài Liệu luyện thi số Việt Nam ( ) Ví dụ : Cho hàm số y = x2 x2 + a ; với a tham số thực, x biến số thựC.Chứng minh đồ thị hàm số cho có ba điểm cực trị tạo thành ba đỉnh tam giác nhọn a  −2 Lời giải Hàm số cho xác định ¡ a a Để hàm số có cực trị  −   a  , phương trình y' = có nghiệm x = x = − − x = − a a    Giả sử hàm số có điểm cực trị : O ( 0; ) ; A  − ; − Suy : OA = OB = a a2   a a2 ; B − − ; −         a4 a −  OAB cân O, ta cần chứng minh OAB có góc ·AOB nhọn 16 OAB có góc nhọn a a4 uuur uuur + OA.OB · 16 = a + 8a = a + Ta có : cos AOB = uuur uuur = a a a − 8a a − OA OB − + 16 ·AOB góc nhọn  cos·AOB   a +   a +  ( a < nên a −  ) a  −2 Kết hợp điều a3 − kiện có cực trị hàm số ta a  −2 Vậy, hàm số có cực trị lập thành tam giác nhọn a  −2 Ví dụ : Cho hàm số y = x3 − 3x2 − mx + (1) Xác định m để hàm số (1) có cực trị, đồng thời đường thẳng qua hai điểm cực trị đồ thị hàm số tạo với hai trục tọa độ tam giác cân Lời giải Hàm số cho xác định ¡ Ta có: y' = 3x2 − 6x − m 24 https://www.facebook.com/Adoba.com.vn/ – FanPage chuyên đề thi – tài liệu FANPAGE: ADOBA – TÀI LIỆU LUYỆN THI SỐ VIỆT NAM | SĐT: 0986772288 Đăng kí http://thichhocchui.xyz/ Zalo 0383572270 Thích Học Chui Ta có: y' = 4x3 + 2ax y' =  x = x2 = − https://www.facebook.com/groups/TruongHocChui FanPage: Adoba – Tài Liệu luyện thi số Việt Nam Hàm số có cực trị y' = có nghiệm phân biệt đổi dấu qua nghiệm, tức phải có:   ' = + 3m  hay m  −3 Với m  −3 đồ thị hàm số có cực trị y =  2m  m x − 1) y'+  − − 2x + − ( 3    2m  m đường thẳng d qua điểm cực trị − 2x + −   Suy y =  −  6−m   6−m ;  , B  0;     2(m + 3)  Tam giác OAB cân  OA = OB  m−6 6−m =  m = 6, m = − ,m = − 2(m + 3) 2 Với m = A  B  O so với điều kiện ta nhận m = − Vậy, với m = − 3 thỏa mãn tốn Ví dụ : Cho hàm số y = 2x3 − 3(2m + 1)x2 + 6m(m + 1)x + (1) Xác định m để M(2m ; m) tạo với hai điểm cực đại, cực tiểu đồ thị hàm số (1) tam giác có diện tích nhỏ Lời giải Hàm số cho xác định ¡ Ta có: y' = 6x2 − 6(2m + 1)x + 6m(m + 1) y' =  x = m, x = m +  m ¡ , hàm số ln có cực đại, cực tiểu Tọa độ điểm cực đại, cực tiểu đồ thị A(m; 2m3 + 3m2 + 1), B(m + 1; 2m + 3m ) Suy AB = phương trình đường thẳng AB : x + y − 2m3 − 3m2 − m − = Do đó, tam giác MAB có diện tích nhỏ khoảng cách từ M tới AB nhỏ Ta có: d(M,AB) = 3m +  d(M; AB)   d(M; AB) = đạt m = Vậy, với m = thỏa mãn toán 25 https://www.facebook.com/Adoba.com.vn/ – FanPage chuyên đề thi – tài liệu FANPAGE: ADOBA – TÀI LIỆU LUYỆN THI SỐ VIỆT NAM | SĐT: 0986772288 Đăng kí http://thichhocchui.xyz/ Zalo 0383572270 Thích Học Chui Giả sử đường thẳng d cắt trục Ox Oy A  https://www.facebook.com/groups/TruongHocChui FanPage: Adoba – Tài Liệu luyện thi số Việt Nam Ví dụ : Cho hàm số: y = x3 − 3mx + ( m tham số) có đồ thị ( Cm ) Tìm tất giá trị tham số m để đường thẳng qua cực đại, cực tiểu đồ thị hàm số ( Cm ) cắt đường tròn tâm I(1;1) bán kính hai điểm phân biệt A, B cho diện tích tam giác IAB lớn Lời giải Hàm số cho xác định ¡ Khi đó, phương trình đường thẳng qua cực đại, cực tiểu  : 2mx + y − = Điều kiện để đường thẳng  cắt đường tròn hai điểm phân biệt d ( I,  )  R  2m − 4m + 1 m  1 SIAB = IA.IB.sin AIB  R = Dấu “=” xảy IA vng góc IB 2 Gọi H trung điểm AB , ta có HI = HA = HB IH2 + HB2 = R  IH = Vậy, với m = R  d ( I,  ) = R  2m − 4m + = m=  12 4  12 thỏa mãn tốn Bài tốn 02: TÌM ĐIỀU KIỆN ĐỂ HÀM SỐ CÓ CỰC ĐẠI, CỰC TIỂU LIÊN QUAN ĐẾN ĐƯỜNG TRỊN, HÌNH BÌNH HÀNH, HÌNH THOI… Các ví dụ Ví dụ : Tìm m để đồ thị hàm số y = x4 − 2mx2 + có cực trị tạo tam giác ngoại tiếp đường trịn có bán kính r = Lời giải TXĐ: D = ¡ ( ) Ta có: y' = 4x3 − 4mx = 4x x2 − m Hàm số có cực đại, cực tiểu y' có nghiệm phân biệt đổi dấu x qua nghiệm đó, phương trình x2 − m = có nghiệm phân biệt khác  m  26 https://www.facebook.com/Adoba.com.vn/ – FanPage chuyên đề thi – tài liệu FANPAGE: ADOBA – TÀI LIỆU LUYỆN THI SỐ VIỆT NAM | SĐT: 0986772288 Đăng kí http://thichhocchui.xyz/ Zalo 0383572270 Thích Học Chui Ta có: y' = 3x2 − 3m với m  hàm số ln có cực đại, cực tiểu https://www.facebook.com/groups/TruongHocChui FanPage: Adoba – Tài Liệu luyện thi số Việt Nam ) ( ( Với m  hàm số có điểm cực trị A ( 0; ) , B − m; − m , C r= ) m ; − m2  S = pr  m + = m −  m = 2 Vậy, với m = thỏa mãn u cầu tốn Ví dụ Giả sử đồ thị y = x4 - m2 + x2 + có cực trị A, B, C Tìm m để đường trịn nội tiếp ( ) Lời giải TXĐ: D = ¡ Ta có: y' = 4x x2 - m2 - ( ) Dễ thấy, " m Ỵ ¡ y' = có nghiệm x = x = - m2 + x = m2 + nên đồ thị hàm số có cực trị ỉ Giả sử A (0;3), Bỗỗỗố Ta cú: AB = AC = 2ử 2ử ổ ỗỗ m2 + 1;3 - m2 + ữ ÷ ÷ , C m2 + 1;3 - m2 + ữ ữ ữ ữ ữ ứ ứ ỗố ( ( ) (m2 + 1) + m2 + , BC = Diện tích tam giác ABC : ) ( 2 (m2 + 1) m2 + = hay (m2 + 1) = + (m2 + 1) + (*) Đặt (m2 + 1) + m2 + + m2 + t = m2 + ìï t - ³ ïï Phương trình (*) viết lại: t = + + t Û í Þ t= ïï t - = + t ïïỵ ( ) Với t = tức m2 + = Û m = ± 27 ) 1 BC.AI = (AB + AC + BC)r với r bán kính đường tròn nội tiếp tam giác 2 ABC r= Û m2 + , I trung điểm BC Þ AI = m2 + https://www.facebook.com/Adoba.com.vn/ – FanPage chuyên đề thi – tài liệu FANPAGE: ADOBA – TÀI LIỆU LUYỆN THI SỐ VIỆT NAM | SĐT: 0986772288 Đăng kí http://thichhocchui.xyz/ Zalo 0383572270 Thích Học Chui tam giác ABC có bán kính https://www.facebook.com/groups/TruongHocChui FanPage: Adoba – Tài Liệu luyện thi số Việt Nam Ví dụ Giả sử đồ thị y = mx3 − 3mx2 + ( 2m + 1) x + − m , có đồ thị ( Cm ) có cực trị Tìm m để 1  khoảng cách từ I  ;  đến đường thẳng qua cực trị ( Cm ) lớn 2  Lời giải Hàm số cho xác định ¡ Ta có: y' = 3mx2 − 6mx + 2m + m  nghiệm , tức ta ln có:   m  m  3m − 3m  Với m  m  ( Cm ) ln có cực trị, đồng thời hoành độ cực trị thỏa mãn phương trình 3mx − 6mx + 2m + = ( ) Và y = ( ) ( x − 1) 3mx2 − 6mx + 2m + + 13 ( − 2m ) x + 10 − m  , suy y = ( − 2m ) x + 10 − m  ( ) 3 đường thẳng qua cực trị Đặt  : y = ( − 2m ) x + 10 − m    : ( − 2m ) x − 3y + 10 − m = Cách 1: d ( I;  ) = Hay d ( I;  ) = Vậy, với m = 2m + ( − 2m ) = +9 18 ( 2m + 1) − +1 2m +  , đẳng thức xảy m =   −   + 2m + 2  max d ( I;  ) =   Cách 2: Dễ thấy  qua điểm cố định M  − ;  với m    Gọi N hình chiếu vng góc I lên  , d ( I;  )  IN  IM , khoảng cách từ I đến  IM IM ⊥  tức kIM k  = −1  28 − 2m = −1  m = https://www.facebook.com/Adoba.com.vn/ – FanPage chuyên đề thi – tài liệu FANPAGE: ADOBA – TÀI LIỆU LUYỆN THI SỐ VIỆT NAM | SĐT: 0986772288 Đăng kí http://thichhocchui.xyz/ Zalo 0383572270 Thích Học Chui Để ( Cm ) có cực trị y' = có nghiệm phân biệt đồng thời đổi dấu lần qua https://www.facebook.com/groups/TruongHocChui FanPage: Adoba – Tài Liệu luyện thi số Việt Nam Câu Đồ thị hàm số y = x - (m2 - 1)x + (2m - 1)x + có hai điểm cực trị cách trục trung điều kiện m là: A.m = B.m = C.m = – D m = ± ” y / = x - 2(m2 - 1)x + 2m - , hàm số có cực trị y/ = có hai nghiệm phân biệt Û (m2 - 1) - 8m + > Û m4 - 2m2 - 8m + > (*) Với m thoả (*), gọi điểm cực trị hàm số x1, x2 YCBT Û x 1+ x2 = Û m2 - = Û m = ± Kết hợp với (*) ta có: m = – Câu Với giá trị m đồ thị hàm số y = - x3 + 3mx2 - 3m - có điểm cực đại, điểm cực tiểu đối xứng với qua đường thẳng d: x + 8y – 74 = 0? A m > B m < C m ¹ D m = ” éx = , hàm số có cực trị m ¹ y / = - 3x + 6mx = - 3x (x - 2m),y / = Û ê êëx = 2m Khi đó: A (0;- 3m - 1),B(2m;4m3 - 3m - 1) điểm cực trị đồ thị hàm số uuur ur uur AB = (2m;4m3 )Þ n = (2m2 ;- 1) VTPT đường thẳng AB, nd = (1;8) Gọi I trung điểm AB, ta có: I (m;2m3 - 3m - 1) ur uur ìï n n = ìï 2m2 - = d A B đối xứng qua đường thẳng d Û ïí Û ïí Û m= ïï I Ỵ d ïï 16m3 - 23m - 82 = ỵ ỵ thoả điều kiện m ¹ Vậy: m = 29 https://www.facebook.com/Adoba.com.vn/ – FanPage chuyên đề thi – tài liệu FANPAGE: ADOBA – TÀI LIỆU LUYỆN THI SỐ VIỆT NAM | SĐT: 0986772288 Đăng kí http://thichhocchui.xyz/ Zalo 0383572270 Thích Học Chui Û x - 2(m2 - 1)x + 2m - = có nghiệm phân biệt ... 2bx + c Hàm số có cực trị thuộc K1 = ( −; ) Hàm số có cực trị thuộc K = (; +) Hàm số có cực trị khoảng ( −; ) Hàm số có cực trị khoảng (; +)  f(x) = có nghiệm ( −; )  f(x) = có nghiệm... thi số Việt Nam  Hàm số có hai cực trị có giá trị cực trị dấu  y1 y  Ví dụ : Định m để hàm số y = x3 − 3mx2 + 3(m2 − 1)x − m có cực trị trái dấu Lời giải Hàm số cho xác định D = ¡ Ta có: ...  Hàm số có hai cực trị nằm phía trục tung  x1 x2   Hàm số có hai cực trị nằm trục hoành  y1 + y  0, y1 y   Hàm số có hai cực trị nằm trục hồnh  y1 + y  0, y1 y   Hàm số có cực trị

Ngày đăng: 02/12/2021, 14:52

HÌNH ẢNH LIÊN QUAN

Bước 3. Lập bảng biến thiên. - Các vấn đề về cực trị của hàm số   file word có lời giải chi tiết
c 3. Lập bảng biến thiên (Trang 2)
Gọ iN là hình chiếu vuông góc củ aI lên , khi đó d I;  IN IM , do đó khoảng cách từ I đến  bằng - Các vấn đề về cực trị của hàm số   file word có lời giải chi tiết
i N là hình chiếu vuông góc củ aI lên , khi đó d I;  IN IM , do đó khoảng cách từ I đến  bằng (Trang 14)
TÌM ĐIỀU KIỆN ĐỂ HÀM SỐ CÓ CỰC TRỊ THỎA MÃN TÍNH CHẤT HÌNH HỌC. Bài toán 01: TÌM ĐIỀU KIỆN ĐỂ HÀM SỐ CÓ CỰC ĐẠI, CỰC TIỂU  CÙNG ĐIỂM K TẠO  THÀNH TAM GIÁC THỎA MÃN TÍNH CHẤT NÀO ĐÓ - Các vấn đề về cực trị của hàm số   file word có lời giải chi tiết
i toán 01: TÌM ĐIỀU KIỆN ĐỂ HÀM SỐ CÓ CỰC ĐẠI, CỰC TIỂU CÙNG ĐIỂM K TẠO THÀNH TAM GIÁC THỎA MÃN TÍNH CHẤT NÀO ĐÓ (Trang 19)
Gọ iN là hình chiếu vuông góc củ aI lên , khi đó d I;  IN IM , do đó khoảng cách từ I đến  bằng - Các vấn đề về cực trị của hàm số   file word có lời giải chi tiết
i N là hình chiếu vuông góc củ aI lên , khi đó d I;  IN IM , do đó khoảng cách từ I đến  bằng (Trang 28)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w