1. Trang chủ
  2. » Trung học cơ sở - phổ thông

Dạy thêm toán 10 CÂU hỏi CHỨA đáp án 0h2 3

21 14 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 21
Dung lượng 1,23 MB

Nội dung

DẠNG ĐỊNH LÝ COSIN, ÁP DỤNG ĐỊNH LÝ COSIN ĐỂ GIẢI TOÁN CẠNH Câu Cho tam giác ABC , mệnh đề sau đúng? 2 2 2 A a  b  c  2bc cos A B a  b  c  2bc cos A 2 C a  b  c  2bc cos C 2 D a  b  c  2bc cos B Lời giải Chọn B 2 Theo định lý cosin tam giác ABC , ta có a  b  c  2bc cos A Câu Cho tam giác ABC , có độ dài ba cạnh BC  a, AC  b, AB  c Gọi ma độ dài đường trung tuyến kẻ từ đỉnh A , R bán kính đường trịn ngoại tiếp tam giác S diện tích tam giác Mệnh đề sau sai? b2  c2 a  A abc S 4R C ma2  2 B a  b  c  2bc cos A a b c    2R D sin A sin B sin C Lời giải Chọn B 2 Theo định lý hàm số cosin tam giác ta có a  b  c  2bc cos A Câu Cho tam giác ABC có a  8, b  10 , góc C 60 Độ dài cạnh c là? A c  21 B c  C c  11 D c  21 Lời giải Chọn D 2 2 Ta có: c  a  b  2a.b.cos C   10  2.8.10.cos 60  84 � c  21 Câu � Cho ABC có b  6, c  8, A  60 Độ dài cạnh a là: A 13 C 37 B 12 D 20 Lời giải Chọn A 2 Ta có: a  b  c  2bc cos A  36  64  2.6.8.cos 60  52 � a  13 Câu Cho ABC có B  60 , a  8, c  Độ dài cạnh b bằng: A B 129 C 49 Lời giải Chọn A 2 2 Ta có: b  a  c  2ac cos B    2.8.5.cos 60  49 � b  D 129 Câu � Cho ABC có AB  ; BC  ; B  60 Tính độ dài AC A 73 B 217 D 113 C Lời giải Chọn A Theo định lý cosin có: AC  BA2  BC  BA.BC.cos � ABC  73 � AC  73 Vậy AC  73 Câu Cho tam giác ABC có AB  2, AC  A  60 Tính độ dài cạnh BC A BC  C BC  Lời giải B BC  D BC  Chọn C 2 Theo định lý cosin ta có: BC  AB  AC  AB AC.cos 60  22  12  2.2.1 Câu  � Tam giác ABC có a  8, c  3, B  60 Độ dài cạnh b bao nhiêu? A 49 B 97 C D 61 Lời giải Chọn C 2 2 Ta có: b  a  c  2ac cos B    2.8.3.cos60  49 � b  Câu � (LẦN 01_VĨNH YÊN_VĨNH PHÚC_2019) Tam giác ABC có C  150 , BC  3, AC  Tính cạnh AB ? A 13 B C 10 Lời giải D Chọn A Theo định lí cosin ABC ta có: �  13 � AB  13 AB  CA2  CB  2CA.CB.cos C Chọn Câu 10 A Cho a; b;c độ dài cạnh tam giác ABC Biết b  ; c  ; a A B 23 C Lời giải cos A  Tính độ dài D Chọn A Áp dụng định lí cosin cho tam giác ABC ta có: a  b  c  2bc.cos A   52  2.7.5  18 Suy ra: a  18  Câu 11 � Cho xOy  30�.Gọi A, B điểm di động Ox, Oy cho AB  Độ dài lớn OB bao nhiêu? A B C Lời giải D Chọn A Áp dụng định lí cosin: AB  OA2  OB  2OA.OB.cos30��  OA2  OB  2OA.OB � OA2  3.OB.OA  OB   (*) Coi phương trình (*) phương trình bậc hai ẩn OA Để tồn giá trị lớn OB � ���  ( 3OB) 4(OB2 4) (*) OB 16 OB Vậy max OB  Câu 12 Cho a; b;c độ dài cạnh tam giác Mệnh đề sau không đúng? A a  ab  ac 2 2 2 B a  c  b  2ac C b  c  a  2bc D ab  bc  b Lời giải Chọn C 2 2 2 � Do b  c  a  2bc.cos A �2bc � b  c �a  2bc nên mệnh đề C sai Áp dụng bất đẳng thức tam giác ta có a  b  c � a  ab  ac ;đáp án A Tương tự a  c  b � ab  bc  b ;mệnh đề D 2 2 2 Ta có: a  c  b  2ac.cos B  2ac � a  c  b  2ac ;mệnh đề B GÓC Câu 13 Cho tam giác ABC có AB  cm, BC  cm, AC  cm Tính cos A A cos A   B cos A  cos A  C Lời giải D cos A  Chọn D Ta có cos A  AB  AC  BC 42  92  2   AB AC 2.4.9 2 Câu 14 Cho tam giác ABC có a  b  c  Khi đó: A Góc C  90 B Góc C  90 C Góc C  90 D Khơng thể kết luận góc C Lời giải Chọn B Ta có: cos C  a  b2  c2 2ab 2 Mà: a  b  c  suy ra: cos C  � C  90 2 Câu 15 Cho tam giác ABC thoả mãn: b  c  a  3bc Khi đó: A A  30 B A  45 C A  60 D A  75 Lời giải Chọn A Ta có: cos A  b2  c2  a 3bc   � A  300 2bc 2bc � Câu 16 Cho điểm A(1;1), B(2; 4), C (10; 2) Góc BAC bao nhiêu? A 90 B 60 C 45 D 30 Lời giải Chọn uA uur uuur AB  (1;3) Ta có: , AC  (9; 3) uuur uuur AB AC �  uuur uuur  � BAC �  900 cos BAC AB AC Suy ra: Câu 17 Cho tam giác ABC , biết a  24, b  13, c  15 Tính góc A ? A 33 34' B 117 49' C 28 37 ' Lời giải Chọn B D 58 24' Ta có: cos A  b  c  a 132  152  242    � A ; 1170 49' 2bc 2.13.15 15 Câu 18 Cho tam giác ABC , biết a  13, b  14, c  15 Tính góc B ? A 59 49' C 59 29' B 53 ' D 62 22' Lời giải Chọn C Ta có: Câu 19 cos B  a  c  b 132  152  14 33   � B ; 590 29' 2ac 2.13.15 65 (TH&TT LẦN – THÁNG 12) Cho tam giác ABC biết độ dài ba cạnh BC , CA, AB lần b  b2  a   c  c2  a  � a , b , c lượt thỏa mãn hệ thức với b �c Khi đó, góc BAC A 45� B 60� C 90� D 120� Lời giải Chọn D Ta có b  b  a   c  c  a  � b3  ba  c  ca � b3  c  a  b  c   �  b  c   b  bc  c  a   � b  c  a  bc Mặt khác Câu 20 �  cos BAC b  c  a bc �  120�    � BAC 2bc 2bc (KSCL lần lớp 11 Yên Lạc-Vĩnh Phúc-1819) Tam giác ABC có AB  c, BC  a, CA  b b  b2  a   c  a  c2  � Các cạnh a, b, c liên hệ với đẳng thức Khi góc BAC độ A 30� B 60� C 90� D 45� Lời giải Chọn B Theo ra, ta có: b  b  a   c  a  c  � b  a b  a c  c  � b  c  a 2b  a c  �  b  c   b  bc  c   a  b  c   �  b  c   b  bc  c  a   � b  bc  c  a  (do b  c �0 ) � b  c  a  bc � Câu 21 b2  c  a2 �  � BAC �  60�  � cos BAC 2bc 2 (THPT KINH MÔN - HD - LẦN - 2018) Cho tam giác ABC vuông cân A M điểm nằm tam giác ABC cho MA : MB : MC  1: : góc AMB bao nhiêu? A 135� B 90� C 150� D 120� Lời giải MB  x � MA  x ; MC  x với  x  BC   x  x 3x  � cos BAM   2.1.2 x 4x Ta có �  cos MAC  4x2  x2  5x2  4x 4x 2 �3 x  � �  5x2 � ��  � � � � x � � x � � x  x    10 x  25 x  16 �2  2 x   (l ) � 17 �� �2  2 x  � 17 � 34 x  20 x   � AM  BM  AB x  x  � � cos AMB   AM BM 2.2 x.x  � � x   �25  10  1�: 20    � � 17 � 17 � 4x2 � Vậy AMB  135� TRUNG TUYẾN Câu 22 Cho tam giác ABC , chọn công thức đáp án sau: A ma2  b2  c2 a  a  b2 c m   C a B ma2  a  c b2  2c  2b  a m  D a Lời giải Chọn D Ta có: Câu 23 ma2  b  c a 2b2  2c  a   4 Tam giác ABC có AB  cm, BC  15 cm, AC  12 cm Khi đường trung tuyến AM tam giác có độ dài A 10 cm C 7,5 cm Lời giải B cm Chọn C D cm Ta có Câu 24 AM  15 AB  AC BC 92  122 152 225 � AM      4 Cho tam giác ABC có AB  3, BC  độ dài đường trung tuyến BM  13 Tính độ dài AC A 11 C Lời giải B D 10 Chọn B Theo cơng thức tính độ dài đường trung tuyến;ta có: BM  Câu 25 BA2  BC AC  �  13   32  52 AC  � AC  4 � , AB  Tính độ dài trung tuyến AM ? Cho ABC vuông A, biết C  30� A B C D Lời giải Chọn A AM trung tuyến ứng với cạnh huyền nên AM  BC  BM  MC � Xét BAC có B  90� 30� 60� � Xét tam giác ABM có BM  AM B  60�suy ABM tam giác � AM  AB  Câu 26 Tam giác ABC có a  6, b  2, c  M điểm cạnh BC cho BM  Độ dài đoạn AM bao nhiêu? 108 A B C D Lời giải Chọn C Ta có: Trong tam giác ABC có a  � BC  mà BM  suy M trung điểm BC b2  c2 a   � AM  Suy ra: 2 Câu 27 Gọi S  ma  mb  mc tổng bình phương độ dài ba trung tuyến tam giác ABC Trong AM  ma2  mệnh đề sau mệnh đề đúng? S  (a  b  c ) A C S 2 B S  a  b  c (a  b2  c ) 2 2 D S  3( a  b  c ) Lời giải Chọn A Ta có: Câu 28 S  ma2  mb2  mc2  b2  c a a  c2 b2 a  b2 c       (a  b  c ) 4 4 � Cho ABC có AB  ; AC  ; A  60 Tính độ dài đường phân giác góc A tam giác ABC 12 A B C Lời giải D Chọn C Gọi M chân đường phân giác góc A 2 Ta có BC  AB  AC  AB AC cos A  � BC  BM AB   Lại có CM AC Suy BM  Áp dụng định lý cosin tam giác ABM ta được: AB  BC  AC 108 2 � AM  AB  BM  AB.BM cos ABC  AB  BM  AB.BM  AB.BC 25 2 � AM  CÁ CH Gọi M chân đường phân giác góc A Vì đoạn thẳng AM  chia tam giác ABC thành hai phần nên ta có: S ABC  S ABM  S ACM � �  AB AM sin BAM �  AC AM sin MAC � AB AC.sin BAC 2 � AM  AB AC.sin 60�  AB  AC  sin 30� � AM  Vậy AM  DẠNG ĐỊNH LÝ SIN, ÁP DỤNG ĐỊNH LÝ SIN ĐỂ GIẢI TOÁN Câu 29 Cho tam giác ABC Tìm cơng thức sai: a a  2R sin A  2R A sin A B C b sin B  R D sin C  c sin A a Lời giải Chọn C a b c    R Ta có: sin A sin B sin C Câu 30 Cho ABC với cạnh AB  c, AC  b, BC  a Gọi R, r , S bán kính đường trịn ngoại tiếp, nội tiếp diện tích tam giác ABC Trong phát biểu sau, phát biểu sai? A C S abc 4R S ab sin C Chọn B R a sin A 2 D a  b  c  2ab cos C Lời giải B a  2R Theo định lí Sin tam giác, ta có sin A Câu 31 � Cho tam giác ABC có góc BAC  60�và cạnh BC  Tính bán kính đường tròn ngoại tiếp tam giác ABC A R  B R  C R  Lời giải Chọn B D R  BC BC  2R � R   sin A 2sin A Ta có: Câu 32 1 2 � � Trong mặt phẳng, cho tam giác ABC có AC  cm , góc A  60�, B  45� Độ dài cạnh BC A B  C  Lời giải D Chọn A BC AC  Ta có sin A sin B Câu 33 � BC  2 2 � � Cho ABC có AB  ; A  40�; B  60� Độ dài BC gần với kết nào? A 3, B 3,3 C 3,5 D 3,1 Lời giải Chọn B �  180� A �B �  180� 40� 60� 80� C BC AB AB  � BC  sin A  sin 40��3,3 sin C sin 80� Áp dụng định lý sin: sin A sin C Câu 34 Cho tam giác ABC thoả mãn hệ thức b  c  2a Trong mệnh đề sau, mệnh đề đúng? A cos B  cos C  2cos A B sin B  sin C  2sin A sin B  sin C  sin A C D sin B  cos C  2sin A Lời giải Chọn B bc a b c b c bc bc    2R �   �  � sin B  sin C  2sin A sin A sin B sin C 2sin A sin B  sin C Ta có: sin A sin B sin C 0 � � Câu 35 Tam giác ABC có a  16,8 ; B  56 13' ; C  71 Cạnh c bao nhiêu? A 29,9 B 14,1 C 17,5 D 19,9 Lời giải Chọn D 0 0 � � � � Ta có: Trong tam giác ABC : A  B  C  180 � A  180  71  56 13'  52 47 ' a b c a c a.sin C 16,8.sin 710   �  �c   ; 19,9 sin A sin 520 47' Mặt khác sin A sin B sin C sin A sin C 0 � � Câu 36 Tam giác ABC có A  68 12 ' , B  34 44 ' , AB  117 Tính AC ? A 68 B 168 C 118 10 D 200 Lời giải Chọn A 0 0 � � � � Ta có: Trong tam giác ABC : A  B  C  180 � C  180  68 12' 34 44'  77 4' a b c AC AB AB.sin B 117.sin 340 44'   �  � AC   ; 68 sin C sin 770 4' Mặt khác sin A sin B sin C sin B sin C DẠNG DIỆN TÍCH TAM GIÁC, BÁN KÍNH ĐƯỜNG TRỊN DIỆN Câu 37 Chọn công thức đáp án sau: 1 S  bc sin A S  ac sin A 2 A B S  bc sin B C S  bc sin B D Lời giải Chọn A 1 S  bc sin A  ac sin B  ab sin C 2 Ta có: Câu 38 � Cho hình thoi ABCD có cạnh a Góc BAD  30� Diện tích hình thoi ABCD a2 A a2 C Lời giải a2 B D a Chọn B Ta có S ABCD Câu 39  a.a.sin 30� a �  AB AD.sin BAD Tính diện tích tam giác ABC biết AB  3, BC  5, CA  A 56 B 48 D C Lời giải Chọn A Ta có: p AB  AC  BC    7 2 Vậy diện tích tam giác ABC là: S p  p  AB   p  AC   p  BC     3        56 Câu 40 Cho ABC có a  6, b  8, c  10 Diện tích S tam giác là: A 48 B 24 C 12 Lời giải Chọn B Ta có: Nửa chu vi ABC : p abc 11 D 30 Áp dụng công thức Hê-rông: S  p( p  a)( p  b)( p  c)  12(12  6)(12  8)(12  10)  24 Câu 41 Cho ABC có a  4, c  5, B  150 Diện tích tam giác là: A B C 10 D 10 Lời giải Chọn B 1 a.c.sin B  4.5.sin1500  2 Ta có: Câu 42 Một tam giác có ba cạnh 13,14,15 Diện tích tam giác bao nhiêu? SABC  A 84 B 84 C 42 D 168 Lời giải Chọn A Ta có: p a  b  c 13  14  15   21 2 Suy ra: S  p( p  a)( p  b)( p  c)  21(21  13)(21  14)(21  15)  84 Câu 43 Cho điểm A(1; 2), B(2;3), C (0;4) Diện tích ABC bao nhiêu? 13 A B 13 C 26 13 D Lời giải Chọn uA uur uuur uuur Ta có: AB  (3;5) � AB  34 , AC  (1;6) � AC  37 , BC  (2;1) � BC  AB  AC  BC 37  34   2 Mặt khác 13 S  p( p  AB)( p  AC )( p  BC )  Suy ra: Câu 44 Cho tam giác ABC có A(1; 1), B(3; 3), C (6;0) Diện tích ABC p A 12 B C D Lời giải Chọn uB uur uuur uuur AB  (2;  2) � AB  2 AC  (5;1) � AC  26 Ta có: , , BC  (3;3) � BC  uuu r uuur Mặt khác AB.BC  � AB  BC AB.BC  Suy ra: Câu 45 Cho tam giác ABC có a  4, b  6, c  Khi diện tích tam giác là: SABC  A 15 B 15 C 105 Lời giải Chọn B Ta có: p a bc 468   2 Suy ra: S  p( p  a)( p  b)( p  c)  15 12 15 D Câu 46 � Cho tam giác ABC Biết AB  ; BC  ABC  60� Tính chu vi diện tích tam giác ABC A  C 3 3 B   19 D Lời giải Chọn B 2 � Ta có: AC  AB  BC  AB.BC.c os ABC    2.2.3.c os60� 13   Suy AC  Chu vi tam giác ABC AB  AC  BC    1 3 S ABC  AB.BC.sin � ABC  2.3.sin 60� 2 (đvdt) Diện tích tam giác ABC m  15 mb  12 mc  Câu 47 Tam giác ABC có trung tuyến a , , Diện tích S tam giác ABC A 72 B 144 C 54 D 108 Lời giải Chọn A Theo tốn ta có � b2  c2 a ma    152 � � �a  10 2b  2c  a  900 � 2 � � � a c b mb    122 � � 2a  2c  b  576 � � b  13 � � � � 2 2a  2b  c  324 c  73 � � � a  b2 c2 m    �c � Ta có S ABC  p abc   13  73 , áp dụng cơng thức He-rong ta có p ( p  a )( p  b)( p  c)  72 Cách 2: Đặt BC  a, CA  b, AB  c , 13 Theo định lý trung tuyến có: � 4ma2  a   b  c  a  10 � � a  2b  2c  900 � a  100 a  100 � � � 2 2 � � � 4mb  b   a  c  � 2a  b  2c  576 � b  208 � b  208 � � � b  13 � � � � � 2 � � � � 2 2 2 4mc  c   b  a  2a  2b  c  324 c  291 c  292 � c  73 � � � � � Có Câu 48 S ABC  p  p  a  p  b  p  c Cho tam giác  ABC có A , p  a  b  c S  72 Suy ABC b  7; c  5;cos A  Độ dài đường cao tam giác  ABC C Lời giải B D 80 Chọn A a  b  c  2bc cos A   52  2.7.5  32  � sin A  � � �3 � 16 � sin A 1  cos A   � � sin A   sin A  � �A �180 nên � �5 � 25 Suy � 1 1 S  bc sin A  7.5  14 S  a.ha � 14  2.ha �  2 2 mà Câu 49 � Cho tam giác ABC có AB  2a; AC  4a BAC  120� Tính diện tích tam giác ABC ? A S  8a B S  2a C S  a Lời giải D S  4a Chọn B Diện tích tam giác ABC BÁN Câu 50 S ABC  �  2a.4a.sin120� 2a AB AC sin BAC 2 (đvdt) Cho tam giác ABC cạnh a Bán kính đường trịn ngoại tiếp tam giác ABC a A a B a C Lời giải Chọn B 14 a D Gọi G trọng tâm ABC Bán kính đường tròn ngoại tiếp Câu 51 R  AG  2a a  3 Cho tam giác ABC có chu vi 12 bán kính đường trịn nội tiếp Diện tích tam giác ABC A 12 B C D 24 Lời giải Chọn C Theo đề tam giác ABC có chu vi 12 nên nửa chu vi nội tiếp 1, tức ta có: r  p 12 ; bán kính đường trịn Diện tích tam giác ABC là: S  p.r  6.1  Câu 52 (THI HK1 LỚP 11 THPT VIỆT TRÌ 2018 - 2019) Cho tam giác ABC cạnh 2a Tính bán kính R đường trịn ngoại tiếp tam giác ABC 2a A 4a B 8a C Lời giải Chọn A Gọi H, K trung điểm cạnh AB, BC ; I giao điểm AH CK Lúc đó, I tâm đường trịn ngoại tiếp tam giác Ta có: Do đó: AH  2a a R  AI  2 2a AH  a  3 15 ABC 6a D Câu 53 Cho tam giác ABC có BC  , AC  AB   Bán kính đường trịn ngoại tiếp tam giác ABC bằng: A B C Lời giải D Chọn C Áp dụng định lý cosin ta có Áp dụng định lý sin ta có Câu 54 cos A  R b2  c2  a  2bc suy A  60� a  2sin A Cho tam giác ABC có AB  , AC  , BC  Bán kính đường tròn nội tiếp tam giác A B C D Lời giải Chọn A 2 Vì AB  AC  BC nên tam giác ABC vuông A AB AC S 3.4 r   1 p AB  AC  BC 3 5   Do bán kính đường trịn nội tiếp Câu 55 Cho ABC có S  84, a  13, b  14, c  15 Độ dài bán kính đường trịn ngoại tiếp R tam giác là: A 8,125 B 130 D 8,5 C Lời giải Chọn A Ta có: SABC  a.b.c a.b.c 13.14.15 65 �R   4R 4S 4.84 Câu 56 Cho ABC có S  10 , nửa chu vi p  10 Độ dài bán kính đường trịn nội tiếp r tam giác là: A B C D Lời giải Chọn D S  pr � r  S 10   p 10 Ta có: Câu 57 Một tam giác có ba cạnh 26, 28,30 Bán kính đường trịn nội tiếp là: A 16 B C D Lời giải Chọn B 16 Ta có: p a  b  c 26  28  30   42 2 p ( p  a )( p  b)( p  c ) 42(42  26)(42  28)(42  30)   p 42 Câu 58 Một tam giác có ba cạnh 52,56,60 Bán kính đường tròn ngoại tiếp là: 65 65 A B 40 C 32,5 D S  pr � r  S  p Lời giải Chọn C Ta có: p a  b  c 52  56  60   84 2 Suy ra: S  p ( p  a)( p  b)( p  c )  84(84  52)(84  56)(84  60)  1344 abc abc 52.56.60 65 �R   4R 4S 4.1344 Mà Câu 59 Tam giác với ba cạnh 5;12;13 có bán kính đường tròn ngoại tiếp là? S A 13 C B 11 D Lời giải Chọn C 13 Ta có: (Tam giác vng bán kính đường trịn ngoại tiếp cạnh huyền ) Câu 60 Tam giác với ba cạnh 5;12;13 có bán kính đường trịn nội tiếp tam giác bao nhiêu? 52  122  132 � R  A C B 2 D Lời giải Chọn A  12  13  15 52  122  132 � S  5.12  30 2 Ta có: Mà S S  p.r � r   p Mặt khác Câu 61 Tam giác với ba cạnh 6;8;10 có bán kính đường trịn ngoại tiếp bao nhiêu? p A B C D Lời giải Chọn A Ta có: 62  82  10 � R  10  (Tam giác vng bán kính đường tròn ngoại tiếp cạnh huyền ) Câu 62 Cho hình chữ nhật ABCD có cạnh AB  4, BC  , M trung điểm BC , N điểm cạnh CD cho ND  NC Khi bán kính đường tròn ngoại tiếp tam giác AMN A B C Lời giải Chọn D 17 D Ta có MC  3, NC  � MN  10 BM  3, AB  � AM  AD  6, ND  � AN  45 p AM  AN  MN 10   45  2 S AMN  p  p  AM   p  AN   p  MN   15 R Câu 63 AM AN MN  S AMN Bán kính đường trịn ngoại tiếp tam giác AMN là: uuur uuur ABC DC  BD Gọi R r bán D Cho tam giác ;gọi điểm thỏa mãn R kính đường trịn ngoại tiếp nội tiếp tam giác ADC Tính tỉ số r A 57 B 75 C Lời giải Chọn D uuur uuur uuur uuur Ta có DC  BD � DC  2 DB Do DC  DB Gọi S diện tích tam giác ACD E trung điểm BC 18 75 D � 2 a2 �S  S ABC  � � �AD  AE  ED  � Đặt AB  a Suy � a2  2 �a � �a � 2a   � � � � � � �6 � � � � AD  DC  AC 5 r  a.r �S   ar.2a 7  a 4r � �S   � 6.36 R 108 R AD DC BC a �S   � 4R 36 R Hơn �            a4r  12 5 a4 R R  �  �  108 R r 108 r Hay 12 DẠNG ỨNG DỤNG THỰC TẾ Câu 64 Khoảng cách từ A đến B đo trực tiếp phải qua đầm lầy Người ta o xác định điểm C mà từ nhìn A B góc 78 24' Biết CA  250 m, CB  120 m Khoảng cách AB bao nhiêu? A 266 m B 255 m C 166 m D 298 m Lời giải Chọn B 2 2 o Ta có: AB  CA  CB  2CB.CA.cos C  250  120  2.250.120.cos78 24' ; 64835 � AB ; 255 Câu 65 Hai tàu thuỷ xuất phát từ vị trí A , thẳng theo hai hướng tạo với góc 600 Tàu thứ chạy với tốc độ 30 km / h , tàu thứ hai chạy với tốc độ 40 km / h Hỏi sau hai tàu cách km ? A 13 B 20 13 C 10 13 D 15 Lời giải Chọn B Ta có: Sau 2h quãng đường tàu thứ chạy là: S1  30.2  60 km Sau 2h quãng đường tàu thứ hai chạy là: S2  40.2  80 km 2 Vậy: sau 2h hai tàu cách là: S  S1  S  2S1.S cos 60  20 13 Câu 66 Từ đỉnh tháp chiều cao CD  80 m , người ta nhìn hai điểm A B mặt đất 0 góc nhìn 72 12' 34 26' Ba điểm A, B, D thẳng hàng Tính khoảng cách AB ? A 71 m B 91m C 79 m D 40 m Lời giải Chọn B Ta có: Trong tam giác vng CDA : Trong tam giác vuông CDB : tan 72012'  tan 340 26'  CD CD 80 � AD   ; 25,7 AD tan 72 12' tan 72012' CD CD 80 � BD   ; 116,7 BD tan 34 26 ' tan 340 26' 19 Suy ra: khoảng cách AB  116,7  25,7  91 m Câu 67 Khoảng cách từ A đến B đo trực tiếp phải qua đầm lầy Người ta xác định điểm C mà từ nhìn A B góc 56 16' Biết CA  200 m , CB  180 m Khoảng cách AB bao nhiêu? A 180 m B 224 m C 112 m D 168 m Lời giải Chọn A 2 2 Ta có: AB  CA  CB  2CB.CA.cos C  200  180  2.200.180.cos56 16' ; 32416 � AB ; 180 Câu 68 Trong khai quật mộ cổ, nhà khảo cổ học tìm đĩa cổ hình trịn bị vỡ, nhà khảo cổ muốn khôi phục lại hình dạng đĩa Để xác định bán kính đĩa, nhà khảo cổ lấy điểm đĩa tiến hành đo đạc thu kết hình vẽ ( AB  4,3 cm; BC  3, cm; CA  7,5 cm) Bán kính đĩa (kết làm trịn tới hai chữ số sau dấu phẩy) A 5,73 cm B 6,01cm C 5,85cm Lời giải D 4,57cm Chọn A Bán kính R đĩa bán kính đường tròn ngoại tiếp tam giác ABC Nửa chu vi tam giác ABC là: S Diện tích tam giác ABC là: Mà Câu 69 S p AB  BC  CA 4,  3,  7,5 31   2 cm p  p  AB   p  BC   p  CA  �5, cm2 AB.BC.CA AB.BC.CA �R �5, 73 4R 4S cm (THI HK1 LỚP 11 THPT VIỆT TRÌ 2018 - 2019) Giả sử CD = h chiều cao tháp C chân tháp Chọn hai điểm A, B mặt đất cho ba điểm A, B, C thẳng hàng 0 � � Ta đo AB = 24m, CAD  63 ; CBD  48 Chiều cao h khối tháp gần với giá trị sau đây? A 61,4 m B 18,5 m C 60 m D 18 m Lời giải Chọn A 20 Ta có �  630 � BAD �  117 � � CAD ADB  1800   1170  480   150 � AB BD AB.sin BAD  � BD  � � sin � ADB Áp dụng định lý sin tam giác ABD ta có: sin ADB sin BAD Tam giác BCD vng C nên có: Vậy CD  �  sin CBD CD � � CD  BD.sin CBD BD � sin CBD � AB.sin BAD 24.sin117 0.sin 480   61, 4m sin150 sin � ADB 21 ... kết nào? A 3, B 3, 3 C 3, 5 D 3, 1 Lời giải Chọn B �  180� A �B �  180� 40� 60� 80� C BC AB AB  � BC  sin A  sin 40�? ?3, 3 sin C sin 80� Áp dụng định lý sin: sin A sin C Câu 34 Cho tam... (? ?3; 5) � AB  34 , AC  (1;6) � AC  37 , BC  (2;1) � BC  AB  AC  BC 37  34   2 Mặt khác 13 S  p( p  AB)( p  AC )( p  BC )  Suy ra: Câu 44 Cho tam giác ABC có A(1; 1), B (3; ? ?3) ,... biết a  24, b  13, c  15 Tính góc A ? A 33 34 ' B 117 49' C 28 37 ' Lời giải Chọn B D 58 24' Ta có: cos A  b  c  a 132  152  242    � A ; 1170 49' 2bc 2. 13. 15 15 Câu 18 Cho tam giác

Ngày đăng: 29/05/2021, 11:55

TỪ KHÓA LIÊN QUAN

w