1. Trang chủ
  2. » Giáo án - Bài giảng

Bài giảng Giải tích 12 - Tiết 33: Hàm số mũ - Hàm số Lôgarit

18 9 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 18
Dung lượng 1,83 MB

Nội dung

GIÁO VIÊN THỰC HIỆN: NGUYỄN QUANG TÁNH TRƯỜNG THPT NGUYEÃN HỆẾU THAÄN KIỂM TRA BÀI CŨ Em cho biết số khơng có lơgarít.? Đ.án: Số số âm, khơng có lơgarít Tìm điều kiện để biểu thức sau có nghĩa? a) f(x) = log3(2x + 3) Đ.án: x >2 b) g(x) = log (1− x) Đ.án: x < KIỂM TRA BÀI CŨ Em nêu bảng tóm tắt tính chất hàm số mũ x a ( a > 0, a ≠ 1) Bảng tóm tắt tính chất hàm số mũ y = x a ( a > 0, a ≠ 1) y= ? Tập xác định ( −∞; + ∞) Đạo hàm y ' = a x ln a Chiều biến thiên a>1: Hàm số đồng biến a 0, ∀x ∈ ¡ ) Tiết 33 J.Napier (15501617) y = ax y y=x y = log a x O x Gv: Nguyeên Quang Trường THPTTánh Nguyễn Hữu Thận II.Hàm số lơgarít 1.Định nghĩa Cho số thực dương a khác Hàm số y = logax gọi hàm số lơgarít số a Ví dụ: Các hàm số y = log x, y = log3 x, y=lnx vµ y = log1 x hàm số lơgarít, có số là: 2;3;e; Cho biết tập xác định hàm số y = logax ( < a ≠ 1) Đáp số : D=(0;+ ∞) Tập xác định hàm số y = log (1− x) …… D = (- ∞; 1) điều kiện 1- x > x < Định lí 3: Hàm số y = logax ( a > , a ≠ 1) , có đạo hàm x > và: ( loga x) ' = xlna Chú ý: 1) ( lnx) ' = ; x u' (lnu)' = u 2) Đối với hàm số y = logau(x), ta có: u' ( loga u) ' = ulna Ví dụ: Hàm số y = log3(x2 +1) có đạo hàm (x + 1)' 2x y' = log3(x + 1) ' = = (x + 1)ln3 (x + 1)ln3 ( ) y = ln( x + + x ) Tìm đạo hàm hàm số: y'= (x + 1+ x ) ' x + 1+ x 1+ x 1 + x = = 2 x + 1+ x 1+ x Tìm đạo hàm hàm số: * Nhóm 1, 3: y = (2 x − 1) ln x * Nhóm 2, 4: y = x ln x − Giải: 2 y ' = [(2 x − 1) ln x ]' = (2 x − 1) 'ln x + (2 x − 1)(ln x) ' * Nhóm 1, 3: = ln x(ln x + (2 x − 1)) x y = x ln x − * Nhóm 2, 4: y ' = ( x ln x − 1) ' = x '(ln x − 1) + x(ln x − 1) ' ( x − 1) ' x = ln x − + x = ln x − + 2x −1 2x −1 3.Khảo sát hàm số lơgarít y = logax (0 < a ≠ 1) Ví dụ: Khảo sát hàm số y= loga x (a > 1) Lời giải: 1) Tập xác định: (0; +∞) Bảng biến thiên 2) Sự biến thiên > 0,∀x > y' = xlna Vậy hàm số đồng biến Giới hạn đặc biệt: lim(loga x) = −∞, + x→ x + y’ + +∞ + +∞ y -∞ 3) Đồ thị lim(loga x) = +∞ Tiệm cận: Trục tung tiệm cận đứng x→+∞ a 3) Đồ thị - Đồ thị qua điểm A(1; 0), B(a; 1) - Chính xác hóa đồ thị Tương tự khảo sát hàm số y = logax (0 < a < 1) ta bảng biến thiên đồ thị sau: x y’ y a - +∞ - +∞ - +∞ Bảng tóm tắt tính chất hàm số y = logax (0 < a< ≠ 1) Tập xác định Đạo hàm D = (0; +∞) y' = xlna +) a > 1: hàm số đồng biến Chiều biến thiên Tiệm cận Đồ thị +) < a < 1: hàm số nghịch biến Trục Oy tiệm cận đứng Đi qua A(1; 0) B(a; 1), nằm phía bên phải trục tung 4 Nêu nhận xét mối liên hệ đồ thị hàm số hình 35 hình 36 Nhận xét: Đồ thị hàm số y = ax y = logax, đối xứng Hình qua 35 đường thẳng y=x Hình 36 Câu hỏi trắc nghiệm Câu1 : Trong hàm số sau, hàm số hàm số lôgarit (a) y = logxx +1 (b) y = log-3xx (c) y = 2lnx (d) y = log(3-2x) (c) Câu2 : Tập xỏc định hàm số y = log0,5(x2-2x ) (a) (a) R\ [0; 2] (b) (0; 2) (c) (-∞; 0] (d) (2; +∞) Câu 3: Cho hàm số y = log3(x2 +x + 1) Đạo hàm hàm số (a) y ' = 2x + ( x + x + 1)log3 2x + (c ) y ' = x + x +1 (b) y ' = (b) 2x + ( x + x + 1)ln (d ) y ' = 2x + ( x + x + 1)log Câu hỏi trắc Câu4 : Trong nghiệm hàm số sau, hàm số đồng biến tâp xác định (a) y = x2 +1 (c) y =log0.5(x+1) (b) y = log3x (d) y = (0,9)x Câu5 : Trong hàm số sau, hàm số nghịch biến tập xác định (a) y = x2 +1 (c) y =log0.5(x+1) (b) y = log3x (d) y = ex HƠ GHI GHINHỚ * Bảng đạo hàm hàm số lũy thừa, mũ, lôgarit (sgk trang 77) * Bảng tóm tắt tính chất hàm số lũy thừa, hàm số mũ, hàm số lôgarit * Học theo sgk làm tập 3, trang 77, 78 Tiết sau luyện tập ... GHINHỚ * Bảng đạo hàm hàm số lũy thừa, mũ, lôgarit (sgk trang 77) * Bảng tóm tắt tính chất hàm số lũy thừa, hàm số mũ, hàm số lôgarit * Học theo sgk làm tập 3, trang 77, 78 Tiết sau luyện tập... lơgarít số a Ví dụ: Các hàm số y = log x, y = log3 x, y=lnx vµ y = log1 x hàm số lơgarít, có số là: 2;3;e; Cho biết tập xác định hàm số y = logax ( < a ≠ 1) Đáp số : D=(0;+ ∞) Tập xác định hàm số. .. liên hệ đồ thị hàm số hình 35 hình 36 Nhận xét: Đồ thị hàm số y = ax y = logax, đối xứng Hình qua 35 đường thẳng y=x Hình 36 Câu hỏi trắc nghiệm Câu1 : Trong hàm số sau, hàm số hàm số lôgarit (a)

Ngày đăng: 02/05/2021, 13:15