Baøi 3. Chứng minh các điểm D, E, F không phụ thuộc vào vị trí của điểm M. Cho ABC với trung tuyến AM. Gọi I là trung điểm AM... Cho hình bình hành ABCD tâm O. Gọi I là trung điểm BC và[r]
(1)CHƯƠNG I VECTƠ I VECTƠ
1 Các định nghĩa
Vectơ đoạn thẳng có hướng Kí hiệu vectơ có điểm đầu A, điểm cuối B AB Giá vectơ đường thẳng chứa vectơ
Độ dài vectơ khoảng cách điểm đầu điểm cuối vectơ, kí hiệu AB Vectơ – khơng vectơ có điểm đầu điểm cuối trùng nhau, kí hiệu 0
Hai vectơ gọi phương giá chúng song song trùng Hai vectơ phương hướng ngược hướng
Hai vectơ gọi chúng hướng có độ dài
Chú ý: + Ta sử dụng kí hiệu a b, , để biểu diễn vectơ.
+ Qui ước: Vectơ 0 phương, hướng với vectơ Mọi vectơ 0 nhau.
2 Các phép toán vectơ
a) Tổng hai vectơ
Qui tắc ba điểm: Với ba điểm A, B, C tuỳ ý, ta có: AB BC AC
Qui tắc hình bình hành: Với ABCD hình bình hành, ta có: AB AD AC
Tính chất: a b b a ; a b c a b c ; a 0 a b) Hiệu hai vectơ
Vectơ đối a vectơ b cho a b 0 Kí hiệu vectơ đối a a Vectơ đối 0 0
a b a b
Qui tắc ba điểm: Với ba điểm O, A, B tuỳ ý, ta có: OB OA AB
c) Tích vectơ với số
Cho vectơ a số k R ka vectơ xác định sau: + ka hướng với a k 0, ka ngược hướng với a k < 0. + ka k a
Tính chất: k a b ka kb ; (k l a ka la ) ; k la ( )kl a
ka 0 k = a 0
Điều kiện để hai vectơ phương: a b a 0cùng phương k R b ka: Điều kiện ba điểm thẳng hàng: Ba điểm phân biệt A, B, C thẳng hàng k ( 0):
AB k AC
Biểu thị vectơ theo hai vectơ không phương: Cho hai vectơ không phương a b, x tuỳ ý Khi duy cặp số m, n R: x ma nb
Chú ý:
Hệ thức trung điểm đoạn thẳng:
M trung điểm đoạn thẳng AB MA MB 0 OA OB 2OM
(O tuỳ ý) Hệ thức trọng tâm tam giác:
(2)VẤN ĐỀ 1: Khái niệm vectơ
Bài 1. Cho tứ giác ABCD Có thể xác định vectơ (khác 0) có điểm đầu điểm cuối điểm A, B, C, D ?
Bài 2. Cho ABC có A, B, C trung điểm cạnh BC, CA, AB a) Chứng minh: BCC A A B
b) Tìm vectơ B C C A ,
Baøi 3. Cho tứ giác ABCD Gọi M, N, P, Q trung điểm cạnh AB, CD, AD, BC Chứng minh: MP QN MQ PN ;
Baøi 4. Cho hình bình hành ABCD có O giao điểm hai đường chéo Chứng minh: a) AC BA AD ; AB AD AC
b) Nếu AB AD CB CD
ABCD hình chữ nhật
Baøi 5. Cho hai véc tơ a b, Trong trường hợp đẳng thức sau đúng: a b a b Baøi 6. Cho ABC cạnh a Tính AB AC ; AB AC
Baøi 7. Cho hình vng ABCD cạnh a Tính AB AC AD
Baøi 8. Cho ABC cạnh a, trực tâm H Tính độ dài vectơ HA HB HC , ,
Bài 9. Cho hình vng ABCD cạnh a, tâm O Tính độ dài vectơ AB AD
, AB AC , AB AD
Baøi 10.
Cho tam giác ABC nội tiếp đường tròn (O) Gọi H trực tâm tam giác, M trung điểm BC AO cắt (O) tài A’ (A), BO căt (O) B’ (B)
a) Chứng minh: AH B C HC AB ' ; ' b) So sánh vectơ: HM MA, '
VẤN ĐỀ 2: Chứng minh đẳng thức vectơ Phân tích vectơ
Để chứng minh đẳng thức vectơ phân tích vectơ theo hai vectơ khơng cùng phương, ta thường sử dụng:
– Qui tắc ba điểm để phân tích vectơ.
– Các hệ thức thường dùng như: hệ thức trung điểm, hệ thức trọng tâm tam giác. – Tính chất hình.
- Tính chất vectơ - Khơng
Bài 1. Cho điểm A, B, C, D, E, F Chứng minh: a) AB DC AC DB
b) AD BE CF AE BF CD
Baøi 2. Cho điểm A, B, C, D Gọi I, J trung điểm AB CD Chứng minh: a) Nếu AB CD
AC BD
b) AC BD AD BC 2IJ
c) Gọi G trung điểm IJ Chứng minh: GA GB GC GD 0
d) Gọi P, Q trung điểm AC BD; M, N trung điểm AD BC Chứng minh đoạn thẳng IJ, PQ, MN có chung trung điểm
Baøi 3. Cho điểm A, B, C, D Gọi I, J trung điểm BC CD Chứng minh:
AB AI JA DA DB
2( ) 3
(3)Bài 4. Cho ABC Bên ngồi tam giác vẽ hình bình hành ABIJ, BCPQ, CARS Chứng minh: RJ IQ PS 0
Bài 5. Cho tam giác ABC, có AM trung tuyến I trung điểm AM a) Chứng minh: 2IA IB IC 0
b) Với điểm O bất kỳ, chứng minh: 2OA OB OC 4OI
Bài 6. Cho ABC có M trung điểm BC, G trọng tâm, H trực tâm, O tâm đường tròn ngoại tiếp Chứng minh:
a) AH 2OM
b) HA HB HC 2HO
c) OA OB OC OH
Baøi 7. Cho hai tam giác ABC ABC có trọng tâm G G a) Chứng minh AA BB CC 3GG
b) Từ suy điều kiện cần đủ để hai tam giác có trọng tâm
Baøi 8. Cho tam giác ABC Gọi M điểm cạnh BC cho MB = 2MC Chứng minh: AM 1AB 2AC
3
Baøi 9. Cho tam giác ABC Gọi M trung điểm AB, D trung điểm BC, N điểm thuộc AC cho CN 2NA K trung điểm MN Chứng minh:
a) AK 1AB 1AC
4
b) KD 1AB 1AC
4
Baøi 10.Cho hình thang OABC M, N trung điểm OB OC Chứng minh rằng: a) AM 1OB OA
2
b) BN 1OC OB
c) MN 1OC OB
Baøi 11.Cho ABC Gọi M, N trung điểm AB, AC Chứng minh rằng: a) AB 2CM 4BN
3
c) AC 4CM 2BN
3
c) MN 1BN 1CM
3
Bài 12.Cho ABC có trọng tâm G Gọi H điểm đối xứng B qua G a) Chứng minh: AH 2AC 1AB
3
CH 1AB AC
b) Gọi M trung điểm BC Chứng minh: MH 1AC 5AB
6
Baøi 13.Cho hình bình hành ABCD, đặt AB a AD b ,
Gọi I trung điểm CD, G là trọng tâm tam giác BCI Phân tích vectơ BI AG , theo a b,
Baøi 14.Cho lục giác ABCDEF Phân tích vectơ BC BD theo vectơ AB vaø AF
Baøi 15.Cho hình thang OABC, AM trung tuyến tam giác ABC Hãy phân tích vectơ AM
theo vectơ OA OB OC , ,
Baøi 16.Cho ABC Trên đường thẳng BC, AC, AB lấy điểm M, N, P cho MB3MC NA, 3CN PA PB, 0
a) Tính PM PN , theo AB AC, b) Chứng minh: M, N, P thẳng hàng
Baøi 17.Cho ABC Gọi A1, B1, C1 trung điểm BC, CA, AB
a) Chứng minh: AA BB CC1 1 10
b) Đặt BB1u CC, 1v
Tính
BC CA AB, ,
theo u vaø v
(4)a) Tính AI AF theo AB vaø AC,
b) Gọi G trọng tâm ABC Tính AG theo AI AF
Bài 19.Cho ABC có trọng tâm G Gọi H điểm đối xứng G qua B a) Chứng minh: HA 5HB HC 0
b) Đặt AG a AH b ,
Tính AB AC, theo a b .
Bài 20 Cho hình bình hành ABCD Một đường thẳng cắt cạnh DA, DC, đường chéo BD theo thức tự E, F, M1 Biết: DE m DA DF ; n DC
(m, n > 0) Hãy biểu diễn: DM1
qua DB m, n
……….
VẤN ĐỀ 3: Xác định điểm thoả mãn đẳng thức vectơ
Để xác định điểm M ta cần phải rõ vị trí điểm hình vẽ Thơng thường ta biến đổi đẳng thức vectơ cho dạng OM a
, O a được
xác định Ta thường sử dụng tính chất về: – Điểm chia đoạn thẳng theo tỉ số k. – Hình bình hành.
– Trung điểm đoạn thẳng. – Trọng tâm tam giác, …
Baøi 1. Cho ABC Hãy xác định điểm M thoả mãn điều kiện: MA MB MC 0
Baøi 2. Cho đoạn thẳng AB có trung điểm I M điểm tuỳ ý không nằm đường thẳng AB Trên MI kéo dài, lấy điểm N cho IN = MI
a) Chứng minh: BN BA MB
b) Tìm điểm D, C cho: NA NI ND ; NM BN NC
Bài 3. Cho hình bình hành ABCD
a) Chứng minh rằng: AB AC AD 2AC
b) Xác định điểm M thoả mãn điều kiện: 3AM AB AC AD
Baøi 4. Cho tứ giác ABCD Gọi M, N trung điểm AD, BC a) Chứng minh: MN (AB DC)
2
b) Xác định điểm O cho: OA OB OC OD 0
Baøi 5. Cho điểm A, B, C, D Gọi M N trung điểm AB, CD, O trung điểm MN Chứng minh với điểm S bất kì, ta có: SA SB SC SD 4SO
Baøi 6. Cho ABC Hãy xác định điểm I, J, K, L thoả đẳng thức sau: a) 2IB3IC0
b) 2 JA JC JB CA c) KA KB KC 2BC
d) 3LA LB 2LC0
Baøi 7. Cho ABC Hãy xác định điểm I, J, K, L thoả đẳng thức sau: a) 2IA 3IB3BC
b) JA JB 2JC0
c) KA KB KC BC
d) LA 2LC AB 2AC
Baøi 8. Cho ABC Hãy xác định điểm I, F, K, L thoả đẳng thức sau: a) IA IB IC BC
b) FA FB FC AB AC
c) 3KA KB KC 0
d) 3LA 2LB LC 0
(5)
a) IA IB IC 4ID
b) 2FA2FB3FC FD
c) 4KA3KB2KC KD 0
Baøi 10. Cho tam giác ABC điểm M tùy ý
a) Hãy xác định điểm D, E, F cho MD MC AB , ME MA BC , MF MB CA
Chứng minh D, E, F không phụ thuộc vào vị trí điểm M b) So sánh véc tơ MA MB MC vaø MD ME MF
Baøi 11. Cho tứ giác ABCD
a) Hãy xác định vị trí điểm G cho: GA GB GC GD 0
(G đgl trọng tâm của tứ giác ABCD).
b) Chứng minh với điểm O tuỳ ý, ta có: OG 1OA OB OC OD
Baøi 12. Cho G trọng tâm tứ giác ABCD A, B, C, D trọng tâm tam giác BCD, ACD, ABD, ABC Chứng minh:
a) G điểm chung đoạn thẳng AA, BB, CC, DD b) G trọng tâm của tứ giác ABCD
Baøi 13. Cho tứ giác ABCD Trong trường hợp sau xác định điểm I số k sao cho vectơ v k MI. với điểm M:
a) v MA MB 2MC
b) v MA MB 2MC
c) v MA MB MC MD
d) v 2MA 2MB MC 3MD
.
Bài 14 Cho đường tròn (O;R) hai điểm cố định A, B Với mõi điểm M xác định M’ sao cho: MM'MA MB
Hãy xác định vị trí M’ biết M chạy (O;R) Bài 15 Cho tam giác ABC (BC = a; CA = b; AB = a) Xác định điểm I cho:
a IA b IB c IC 0
………
VẤN ĐỀ 4: Chứng minh ba điểm thẳng hàng Hai điểm trùng nhau
Để chứng minh ba điểm A, B, C thẳng hàng ta chứng minh ba điểm thoả mãn đẳng thức AB k AC , với k 0.
Để chứng minh hai điểm M, N trùng ta chứng minh chúng thoả mãn đẳng thức
OM ON
, với O điểm MN 0
.
Baøi 1. Cho bốn điểm O, A, B, C cho : OA2OB 3OC0
Chứng tỏ A, B, C thẳng hàng
Bài 2. Cho hình bình hành ABCD Trên BC lấy điểm H, BD lấy điểm K cho: BH 1BC BK, 1BD
5
Chứng minh: A, K, H thẳng hàng HD: BH AH AB BK AK AB ;
Baøi 3. Cho ABC với I, J, K xác định bởi: IB2IC
, JC 1JA
, KAKB
a) Tính IJ IK theo AB vaø AC , (HD: IJ AB 4AC
)
(6)Baøi 4. Cho tam giác ABC Trên đường thẳng BC, AC, AB lấy điểm M, N, P cho MB3MC, NA3CN, PA PB 0
a) Tính PM PN , theo AB AC,
b) Chứng minh ba điểm M, N, P thẳng hàng
Bài 5. Cho hình bình hành ABCD Trên tia AD, AB lấy điểm F, E cho AD =
2AF, AB =
2AE Chứng minh: a) Ba điểm F, C, E thẳng hàng
b) Các tứ giác BDCF, DBEC hình bình hành
Bài 6. Cho ABC Hai điểm I, J xác định bởi: IA3IC 0
, JA2JB3JC0
Chứng minh điểm I, J, B thẳng hàng
Baøi 7. Cho ABC Hai điểm M, N xác định bởi: 3MA4MB0
, NB 3NC 0
Chứng minh điểm M, G, N thẳng hàng, với G trọng tâm ABC
Baøi 8. Cho ABC Lấy điểm M N, P: MB 2MC NA 2NC PA PB 0
a) Tính PM PN theo AB AC , b) Chứng minh điểm M, N, P thẳng hàng
Bài 9. Cho ABC Về phía ngồi tam giác vẽ hình bình hành ABIJ, BCPQ, CARS Chứng minh tam giác RIP JQS có trọng tâm
Baøi 10.Cho tam giác ABC, A điểm đối xứng A qua B, B điểm đối xứng B qua C, C điểm đối xứng C qua A Chứng minh tam giác ABC ABC có chung trọng tâm
Bài 11.Cho ABC Gọi A, B, C điểm định bởi: 2A B 3A C 0
, 2B C 3B A 0
,
C A C B
2 3 0
Chứng minh tam giác ABC ABC có trọng tâm
Baøi 12.Trên cạnh AB, BC, CA ABC lấy điểm A, B, C cho:
AA BB CC
AB BC AC
Chứng minh tam giác ABC ABC có chung trọng tâm
Baøi 13.Cho tam giác ABC điểm M tuỳ ý Gọi A, B, C điểm đối xứng M qua trung điểm K, I, J cạnh BC, CA, AB
a) Chứng minh ba đường thẳng AA, BB, CC đồng qui điểm N
b) Chứng minh M di động, đường thẳng MN qua trọng tâm G ABC
Bài 14.Cho tam giác ABC có trọng tâm G Các điểm M, N thoả mãn: 3MA4MB0
, CN 1BC
2
Chứng minh đường thẳng MN qua trọng tâm G ABC
Baøi 15.Cho tam giác ABC Gọi I trung điểm BC, D E hai điểm cho BD DE EC
a) Chứng minh AB AC AD AE
b) Tính AS AB AD AC AE theo AI
Suy ba điểm A, I, S thẳng hàng
Baøi 16.Cho tam giác ABC Các điểm M, N xác định hệ thức BM BC 2AB
, CN x AC BC
a) Xác định x để A, M, N thẳng hàng.
b) Xác định x để đường thẳng MN trung điểm I BC Tính IM IN Baøi 17.Cho ba điểm cố định A, B, C ba số thực a, b, c cho a b c 0
a) Chứng minh có điểm G thoả mãn aGA bGB cGC 0
(7)G, M, P thẳng hàng
Baøi 18.Cho tam giác ABC Các điểm M, N thoả mãn MN 2MA3MB MC
a) Tìm điểm I thoả mãn 2IA3IB IC 0
b) Chứng minh đường thẳng MN qua điểm cố định
Baøi 19.Cho tam giác ABC Các điểm M, N thoả mãn MN 2MA MB MC
a) Tìm điểm I cho 2IA IB IC 0
b) Chứng minh đường thẳng MN qua điểm cố định
c) Gọi P trung điểm BN Chứng minh đường thẳng MP ln qua điểm cố định
Bài 20.Cho tam giác ABC Các điểm P, Q thoả mãn:
3
PA PB
QA QC
a) Biểu diễn: AP AQ, theo AB AC,
b) Chứng minh rằng: PQ qua trọng tâm tam giác ABC
VẤN ĐỀ 5: Tập hợp điểm thoả mãn đẳng thức vectơ
Để tìm tập hợp điểm M thoả mãn đẳng thức vectơ ta biến đổi đẳng thức vectơ để đưa tập hợp điểm biết Chẳng hạn:
– Tập hợp điểm cách hai đầu mút đoạn thẳng đường trung trực của đoạn thẳng đó.
– Tập hợp điểm cách điểm cố định khoảng không đổi đường trịn có tâm là điểm cố định bán kính khoảng không đổi.
– Tập hợp M qua A có vtcp cho trước,
Bài 1. Cho điểm cố định A, B Tìm tập hợp điểm M cho:
a) MA MB MA MB b) 2 MA MB MA2MB
Bài 2. Cho ABC Tìm tập hợp điểm M cho: a) MA MB MC MB MC
2
b) MA BC MA MB
c) 2MA MB 4MB MC
d) 4MA MB MC 2MA MB MC
Baøi 3. Cho ABC
a) Xác định điểm I cho: 3IA 2IB IC 0
b) Chứng minh đường thẳng nối điểm M, N xác định hệ thức: MN 2MA 2MB MC
luôn qua điểm cố định
c) Tìm tập hợp điểm H cho: 3HA 2HB HC HA HB d) Tìm tập hợp điểm K cho: 2 KA KB KC 3KB KC
Baøi 4. Cho ABC
a) Xác định điểm I cho: IA 3IB2IC0 b) Xác định điểm D cho: 3DB 2DC 0 c) Chứng minh điểm A, I, D thẳng hàng
d) Tìm tập hợp điểm M cho: MA3MB 2MC 2MA MB MC
(8)3 |MA MB MC MD | | MB MD MC |
VẤN ĐỀ 5: Áp dụng vectơ giải toán
Bài Cho hai tam giác: ABC, A1B1C1 A2, B2, C2 theo thứ tự trọng tâm tam giác :
BCA, CAB1, ABC1 G, G1, G2 theo thứ tự trọng tâm tam giác ABC, A1B1C1 A2, B2, C2
Chứng minh: G, G1, G2 Tính tỉ số:
G G G G ?
Bài Cho tam giác ABC Trên AC lấy điểm M, BC lấy điểm N cho: AM = 3MC, NC = 2BN, gọi O giao điểm AN BM Biết diện tích tam giác OBN 1, tính diện tích tam giác ABC
Bài Cho tam giác ABC Chứng minh với điểm M thuộc cạnh AB khơng trùng với đỉnh ta có: MC.AB < MA.BC + MB.AC
II TOẠ ĐỘ
1 Trục toạ độ
Trục toạ độ (trục) đường thẳng xác định điểm gốc O vectơ đơn vị e Kí hiệu O e;
Toạ độ vectơ trục: u( )a u a e Toạ độ điểm trục: M k( )OM k e
Độ dài đại số vectơ trục: AB a AB a e .
Chú ý: + Nếu AB hướng với e AB AB . Nếu AB ngược hướng với e AB AB.
+ Nếu A(a), B(b) AB b a .
+ Hệ thức Sa–lơ: Với A, B, C tuỳ ý trục, ta có: AB BC AC . 2 Hệ trục toạ độ
Hệ gồm hai trục toạ độ Ox, Oy vuông góc với Vectơ đơn vị Ox, Oy i j , O gốc toạ độ, Ox trục hoành, Oy trục tung.
Toạ độ vectơ hệ trục toạ độ: u( ; )x y u x i y j Toạ độ điểm hệ trục toạ độ: M x y( ; )OM x i y j
Tính chất: Cho a( ; ),x y b( ; ),x y k R , A x y( ; ), ( ; ), ( ; )A A B x yB B C x yC C :
+ a b x x
y y
+ a b (x x y y ; ) + ka( ; )kx ky + b phương với a 0 k R: xkx vaø yky
x y x y
(nếu x 0, y 0). + AB(xB x yA B; yA)
(9)+ Toạ độ trung điểm I đoạn thẳng AB: xI xA xB; yI yA yB
2
+ Toạ độ trọng tâm G tam giác ABC: xG xA xB xC ; yG yA yB yC
3
+ Toạ độ điểm M chia đoạn AB theo tỉ số k 1: xM xA kxB yM yA kyB
k ; k
1
( M chia đoạn AB theo tỉ số k MA kMB
)
………
VẤN ĐỀ 1: Toạ độ trục
Baøi 1. Trên trục x'Ox cho điểm A, B có tọa độ 2 5. a) Tìm tọa độ AB
b) Tìm tọa độ trung điểm I đoạn thẳng AB c) Tìm tọa độ điểm M cho 2MA 5MB0 d) Tìm tọa độ điểm N cho 2NA3NB1
Baøi 2. Trên trục x'Ox cho điểm A, B có tọa độ 3 1. a) Tìm tọa độ điểm M cho 3MA 2MB1
b) Tìm tọa độ điểm N cho NA3NB AB Baøi 3. Trên trục x'Ox cho điểm A(2), B(4), C(1), D(6).
a) Chứng minh rằng:
AC AD AB
1
b) Gọi I trung điểm AB Chứng minh: IC ID IA. c) Gọi J trung điểm CD Chứng minh: AC AD AB AJ Baøi 4. Trên trục x'Ox cho điểm A, B, C có tọa độ a, b, c.
a) Tìm tọa độ trung điểm I AB
b) Tìm tọa độ điểm M cho MA MB MC 0
c) Tìm tọa độ điểm N cho 2NA 3NB NC
Baøi 5. Trên trục x'Ox cho điểm A, B, C, D tuỳ ý a) Chứng minh: AB CD AC DB DA BC. . . 0
b) Gọi I, J, K, L trung điểm đoạn AC, BD, AB, CD Chứng minh đoạn IJ KL có chung trung điểm
VẤN ĐỀ 2: Toạ độ hệ trục
Baøi 1. Viết tọa độ vectơ sau:
a) a 2i ;j b 1i ;j c ;i d 2j
b) a i ;j b 1i j c; i j d; ;j e 3i
2
Baøi 2. Viết dạng u xi yj biết toạ độ vectơ u là: a) u(2; 3); u ( 1;4); u(2;0);u(0; 1)
(10)Bài 3. Cho a(1; 2), b(0;3) Tìm toạ độ vectơ sau:
a) x a b y a b z ; ; 2a 3b b) u 3a ;b v b w; 4a 1b
Baøi 4. Cho a (2;0),b 1;1 ,c (4; 6)
a) Tìm toạ độ vectơ d2a 3b5c b) Tìm số m, n cho: ma b nc 0 c) Biểu diễn vectơ ctheo ,a b
Baøi 5. Cho hai điểm A(3; 5), (1;0) B .
a) Tìm toạ độ điểm C cho: OC 3AB b) Tìm điểm D đối xứng A qua C
c) Tìm điểm M chia đoạn AB theo tỉ số k = –3.
Baøi 6. Cho ba điểm A(–1; 1), B(1; 3), C(–2; 0) a) Chứng minh ba điểm A, B, C thẳng hàng
b) Tìm tỉ số mà điểm A chia đoạn BC, điểm B chia đoạn AC, điểm C chia đoạn AB
Baøi 7. Cho ba điểm A(1; 2), B(0; 4), C(3; 2) a) Tìm toạ độ vectơ AB AC BC, , b) Tìm tọa độ trung điểm I đoạn AB
c) Tìm tọa độ điểm M cho: CM2AB 3AC
d) Tìm tọa độ điểm N cho: AN2BN 4CN 0
Baøi 8. Cho ba điểm A(1; –2), B(2; 3), C(–1; –2) a) Tìm toạ độ điểm D đối xứng A qua C
b) Tìm toạ độ điểm E đỉnh thứ tư hình bình hành có đỉnh A, B, C c) Tìm toạ độ trọng tâm G tam giác ABC
Bài 9. Cho hai đỉnh hình vng là: (1; 2) ; (3; 5) Tìm hai đỉnh cịn lại hình vng Bài 10 Cho A(2; 1); B(3; 1) ; C(-4; 0) Xác định điểm D cho ABCD hình thang cân
đáy AB
BÀI TẬP ƠN CHƯƠNG I
Bài 1. Cho tam giác ABC với trực tâm H, B điểm đối xứng với B qua tâm O đường tròn ngoại tiếp tam giác Hãy xét quan hệ vectơ AH vaø B C AB vaø HC ;
Baøi 2. Cho bốn điểm A, B, C, D Gọi I, J trung điểm AB CD a) Chứng minh: AC BD AD BC 2IJ
b) Gọi G trung điểm IJ Chứng minh: GA GB GC GD 0
c) Gọi P, Q trung điểm đoạn thẳng AC BD; M, N trung điểm đoạn thẳng AD BC Chứng minh ba đoạn thẳng IJ, PQ MN có chung trung điểm
Bài 3. Cho tam giác ABC điểm M tuỳ ý
a) Hãy xác định điểm D, E, F cho MD MC AB , ME MA BC , MF MB CA
Chứng minh điểm D, E, F khơng phụ thuộc vào vị trí điểm M b) So sánh hai tổng vectơ: MA MB MC MD ME MF
(11)a) Chứng minh: 2IA IB IC 0
b) Với điểm O bất kì, chứng minh: 2OA OB OC 4OI
Bài 5. Cho hình bình hành ABCD tâm O Gọi I trung điểm BC G trọng tâm ABC Chứng minh:
a) 2AI2AO AB
b) 3DG DA DB DC
Baøi 6. Cho hình bình hành ABCD tâm O Gọi I J trung điểm BC, CD a) Chứng minh: AI D 2A AB
2
b) Chứng minh: OA OI OJ 0
c) Tìm điểm M thoả mãn: MA MB MC 0
Baøi 7. Cho tam giác ABC có trọng tâm G Gọi D E điểm xác định AD2AB
, AE 2AC
5
a) Tính AG DE DG theo AB vaø AC, , b) Chứng minh ba điểm D, E, G thẳng hàng
Baøi 8. Cho ABC Gọi D điểm xác định AD 2AC
M trung điểm đoạn BD a) Tính AM theo AB vaø AC
b) AM cắt BC I Tính IC IB
AI AM
Bài 9. Cho ABC Tìm tập hợp điểm M thỏa điều kiện:
a) MA MB b) MA MB MC 0
c) MA MB MA MB d) MA MB MA MB e) MA MB MA MC
Baøi 10.Cho hình thang cân ABCD có đáy AD, BC, góc BAD300 Biết: AB a ;AD b Hãy biểu diễn vectơ: BC CD AC BD, , , theo vectơ a b ;
Baøi 11. Cho vectơ a b ; không phương , (1 )
u a x b v x a b Tìm x để hai vectơ u v , hướng
Baøi 12. Cho ABC có A(4; 3) , B(1; 2) , C(3; 2) a) Tìm tọa độ trọng tâm G ABC
b) Tìm tọa độ điểm D cho tứ giác ABCD hình bình hành
Bài 13. Cho A(2; 3), B(1; 1), C(6; 0)
a) Chứng minh ba điểm A, B, C không thẳng hàng b) Tìm tọa độ trọng tâm G ABC
c) Tìm tọa độ điểm D để tứ giác ABCD hình bình hành
Bài 14. Cho A(0; 2) , B(6; 4) , C(1; 1) Tìm toạ độ điểm M, N, P cho: a) Tam giác ABC nhận điểm M, N, P làm trung điểm cạnh b) Tam giác MNP nhận điểm A, B, C làm trung điểm cạnh Bài 15 Tam giác ABC có A(1; 3) ; B(0; 1), trực tâm ( ; )8
5
H Tìm toạ độ tâm đường trịn ngoại tiếp tam giác ABC