1. Trang chủ
  2. » Luận Văn - Báo Cáo

đề 1 i phần chung cho tất cả thí sinh7 điểm câu i 30 điểm cho hàm số có đồ thị c a khảo sát sự biến thiên và vẽ đồ thị c b dùng đồ thị c xác định k để phương trình sau có đúng 3 nghiệm

16 8 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 2 MB

Nội dung

b). Diện tích thiết diện qua trục hình trụ II.. Giả sử SO = h và mặt bên tạo với đáy của hình chóp một góc . Tính theo h và  thể tích của hình chóp S.ABCD. PHẦN DÀNH CHO HỌC SINH TỪNG[r]

(1)

ĐỀ 1

I PHẦN CHUNG CHO TẤT CẢ THÍ SINH(7 điểm ) Câu I ( 3,0 điểm )

Cho hàm số yx33x21 có đồ thị (C)

a.Khảo sát biến thiên vẽ đồ thị (C)

b Dùng đồ thị (C) , xác định k để phương trình sau có nghiệm phân biệt

x3 3x2 k 0.

Câu II ( 3,0 điểm )

a.Giải phương trình 33 4 92 2

x x

b Cho hàm số sin 

y

x Tìm nguyên hàm F(x )

của hàm số , biết đồ thị hàm số F(x) qua điểm M(6

 ; 0)

c.Tìm giá trị nhỏ hàm số

1   

y x

x với x > 0

Câu III ( 1,0 điểm )

Cho hình chóp tam giác có cạnh đường cao h = Hãy tính diện tích mặt cầu ngoại tiếp hình chóp

II PHẦN T3 điểm )

Thí sinh học chương trình làm làm phần dành riêng cho chương trình

1 Theo chương trình chuẩn : Câu IV.a ( 2,0 điểm ) :

Trong không gian với hệ tọa độ Oxyz , cho đường thẳng

(d) :

2

1 2

 

 

x y z

mặt phẳng (P) : 2x y z   0

a Chứng minh (d) cắt (P) A Tìm tọa độ điểm A

b Viết phương trình đường thẳng () qua A , nằm (P) vng góc với (d)

Câu V.a ( 1,0 điểm ) : Tính diện tích hình phẳng giới hạn đường :

1 ln , ,

  

y x x x e

e trục hồnh Theo chương trình nâng cao :

Câu IV.b ( 2,0 điểm ) :

Trong không gian với hệ tọa độ Oxyz , cho đường thẳng

(d ) :

2

3    

      

x t

y t

z t mặt phẳng (P) : x y 2z 5 a Chứng minh (d) nằm mặt phẳng (P) b Viết phương trình đường thẳng () nằm (P), song song với (d) cách (d) khoảng 14 Câu V.b ( 1,0 điểm ) :

Tìm bậc hai số phức z 4i

ĐỀ 2

I PHẦN CHUNG CHO TẤT CẢ THÍ SINH( điểm ) Câu I ( 3,0 điểm ) Cho hàm số

2 1    x

x

y

có đồ thị (C)

a.Khảo sát biến thiên vẽ đồ thị (C)

b.Viết phương trình tiếp tuyến với đồ thị (C) qua điểm M(1;8)

Câu II ( 3,0 điểm ) a Giải bất phương trình

2 logsin

3

 

x x

;b Tính tích phân : I =

1

0

(3 cos )

x x dx

c.Giải phương trình 4 7 0

  

x x tập số phức Câu III ( 1,0 điểm )

Một hình trụ có bán kính đáy R = , chiều cao h = 2 Một hình vng có đỉnh nằm hai đường trịn đáy cho có cạnh không song song không vuông góc với trục hình trụ Tính cạnh hình vng

II PHẦN RIÊNG ( điểm ) 1.Theo chương trình chuẩn : Câu IV.a ( 2,0 điểm ) :

Trong không gian với hệ tọa độ Oxyz , cho điểm M(1;0;5) hai mặt phẳng

(P) :2x y 3z 1 0 (Q) : x y z   5 0 a Tính khoảng cách từ M đến mặt phẳng (Q)

b Viết phương trình mặt phẳng ( R ) qua giao tuyến (d) (P) (Q) đồng thời vng góc với mặt phẳng (T) : 3x y  1 0

Câu V.a ( 1,0 điểm ) :

Cho hình phẳng (H) giới hạn đường y =

2 2

xx trục hồnh Tính thể tích khối trịn xoay tạo thành quay hình (H) quanh trục hồnh 2.Theo chương trình nâng cao :

Câu IV.b ( 2,0 điểm ) :

Trong không gian với hệ tọa độ Oxyz , cho đường thẳng (d ) :

3

2 1

  

 

x y z

mặt phẳng (P) : x2y z  5 0

a Tìm tọa độ giao điểm đường thẳng (d) mặt phẳng (P)

b Tính góc đường thẳng (d) mặt phẳng (P) c Viết phương trình đường thẳng () hình chiếu đường thẳng (d) lên mặt phẳng (P)

Câu V.b ( 1,0 điểm ) : Giải hệ phương trình sau :

2 2

4 log

log

 

 

 

 

 

y

(2)

ĐỀ 3

I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7điểm ) Câu I ( 3,0 điểm )

Cho hàm số yx4 2x21 có đồ thị (C) a.Khảo sát biến thiên vẽ đồ thị (C)

b.Dùng đồ thị (C ) , biện luận theo m số nghiệm thực phương trìnhx4 2x2 m0

Câu II ( 3,0 điểm ) a.Giải phương trình

log 2log cos cos

3 log

3

   

x x

x x

b.Tính tích phân : I =

1

0

(  )

x x e dxx

c.Tìm giá trị lớn giá trị nhỏ hàm số y = 2 3 12 2

  

x x x [ 1; 2] Câu III ( 1,0 điểm )

Cho tứ diện SABC có ba cạnh SA,SB,SC vng góc với đôi với SA = 1cm,SB = SC = 2cm Xác định tân tính bán kính mặt cấu ngoại tiếp tứ diện , tính diện tích mặt cầu thể tích khối cầu

II PHẦN RIÊNG ( điểm ) Theo chương trình chuẩn : Câu IV.a ( 2,0 điểm ) :

Trong không gian với hệ tọa độ Oxyz , cho điểm A( 2;1; 1) ,B(0;2;1) ,C(0;3;0) D(1;0;1)

a Viết phương trình đường thẳng BC

b Chứng minh điểm A,B,C,D không đồng phẳng

c Tính thể tích tứ diện ABCD

Câu V.a ( 1,0 điểm ) : Tính giá trị biểu thức

2

(1 ) (1 )

   

P i i

2 Theo chương trình nâng cao : Câu IV.b ( 2,0 điểm ) :

Trong không gian với hệ tọa độ Oxyz cho điểm M(1; 1;1) , hai đường thẳng

1 ( ) :

1 

  

x y z

,

2

2 ( ) :

1        

  

x t

y t

z mặt phẳng (P) :

2  

y z

a Tìm điểm N hình chiếu vng góc điểm M lên đường thẳng (2)

b Viết phương trình đường thẳng cắt hai đường thẳng ( ) ,( )1 2 nằm mặt phẳng (P)

Câu V.b ( 1,0 điểm ) :

Tìm m để đồ thị hàm số

2

( ) :

1   

m

x x m

C y

x với

0 

m cắt trục hoành hai điểm phân biệt A,B sao

cho tuếp tuyến với đồ thị hai điểm A,B vng góc

ĐỀ 4

I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm ) Câu I ( 3,0 điểm )

Cho hàm số yx3 3x1 có đồ thị (C) a.Khảo sát biến thiên vẽ đồ thị (C)

b.Viết phương trình tiếp tuyến với đồ thị (C) qua điểm M(

14

9 ; 1) Câu II ( 3,0 điểm ) a.Cho hàm số

2

 

x x

y e Giải phương trình

2

  

y y y

b.Tính tìch phân :

2

2

sin (2 sin )

 

x

I dx

x

c.Tìm giá trị lớn giá trị nhỏ hàm số

3

2sin cos 4sin

   

y x x x

Câu III ( 1,0 điểm )

Một hình nón có đỉnh S , khoảng cách từ tâm O đáy đến dây cung AB đáy a , SAO30, SAB 60 Tính độ dài đường sinh theo a

II PHẦN RIÊNG ( điểm ) Theo chương trình chuẩn : Câu IV.a ( 2,0 điểm ) :

Trong không gian với hệ tọa độ Oxyz , cho hai đường thẳng

1

( ) :

2

 

  

 

x y z

,

2

( ) :

4    

      

x t

y t

z

a Chứng minh đường thẳng ( )1 đường

thẳng (2) chéo

b Viết phương trình mặt phẳng ( P ) chứa đường thẳng ( )1 song song với đường thẳng (2)

Câu V.a ( 1,0 điểm ) :

Giải phương trình x3 8 0 tập số phức Theo chương trình nâng cao :

Câu IV.b ( 2,0 điểm ) :

Trong không gian với hệ tọa độ Oxyz cho điểm M(2;3;0) , mặt phẳng (P ) :

x y 2z 1 0 mặt cầu (S) :

2 2 2 4 6 8 0

      

x y z x y z

a Tìm điểm N hình chiếu điểm M lên mặt phẳng (P)

b Viết phương trình mặt phẳng (Q) song song với (P) tiếp xúc với mặt cầu (S)

Câu V.b ( 1,0 điểm ) :

(3)

ĐỀ 5

I PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( điểm ) Câu I ( 3,0 điểm )

Cho hàm số

3   x

x

y

có đồ thị (C) a.Khảo sát biến thiên vẽ đồ thị (C)

b.Tìm tất giá trị tham số m để đường thẳng (d) : y = mx + cắt đồ thị hàm số cho hai điểm phân biệt

Câu II ( 3,0 điểm ) a.Giải bất phương trình

ln (1 sin )

2

2

log ( )

 

  

e x x

b.Tính tìch phân : I =

2

0

(1 sin ) cos

2

x xdx

c.Tìm giá trị lớn giá trị nhỏ hàm số 

x x

e y

e e đoạn [ ln ; ln 4]

Câu III ( 1,0 điểm )

Cho hình lăng trụ tam giác ABC.A’B’C’ có tất cà cạnh a Tính thể tích hình lăng trụ diện tích mặt cầu ngoại tiếp hình lăng trụ theo a

II PHẦN RIÊNG ( điểm ) Theo chương trình chuẩn : Câu IV.a ( 2,0 điểm ) :

Trong không gian với hệ tọa độ Oxyz , cho hai đường

thẳng

1

2 ( ) :

   

    

x t

d y

z t

2

( ) :

1

 

 

x y z

d

a Chứng minh hai đường thẳng ( ),( )d1 d2 vng

góc không cắt

b Viết phương trình đường vng góc chung

1

( ),( )d d

Câu V.a ( 1,0 điểm ) :

Tìm mơđun số phức z 1 4i(1 ) i 3. Theo chương trình nâng cao :

Câu IV.b ( 2,0 điểm ) :

Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng ( ) : 2x y 2z 0

hai đường thẳng (d1 ) :

4

2

 

 

x y z

, (d2 ) :

3

2

  

 

x y z

a Chứng tỏ đường thẳng (d1) song song mặt phẳng (

 ) (d2) cắt mặt phẳng ( )

b Tính khoảng cách đường thẳng (d1) (d2 )

c Viết phương trình đường thẳng () song song với mặt phẳng ( ) , cắt đường thẳng (d1) (d2 ) lần

lượt M N cho MN =

ĐỀ 6

I PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( điểm ) Câu I ( 3,0 điểm )

Cho hàm số y = x 42x2 có đồ thị (C) a.Khảo sát biến thiên vẽ đồ thị (C)

b.Viết phương trình tiếp tuyến với đồ thị (C) qua điểm M ( 2;0)

Câu II ( 3,0 điểm )

a.Cho lg 392a , lg112b Tính lg7 lg5 theo a và b

b.Tính tìch phân : I =

2

1

0

( sin )

x ex x dx

c.Tìm giá trị lớn giá trị nhỏ có hàm số

2

1

 

x y

x

Câu III ( 1,0 điểm )

Tính tỉ số thể tích hình lập phương thể tích hình trụ ngoại tiếp hình lập phương

II PHẦN RIÊNG ( điểm ) Theo chương trình chuẩn : Câu IV.a ( 2,0 điểm ) :

Trong không gian với hệ tọa độ Oxyz , cho tam giác ABC với đỉnh A(0;2;1) ,

B(3;1;2) , C(1;1;4)

a Viết phương trình tắc đường trung tuyến kẻ từ đỉnh A tam giác

b Viết phương trình tham số đường thẳng qua điểm C vng góc với mặt

phẳng (OAB) với O gốc tọa độ Câu V.a ( 1,0 điểm ) :

Cho hình phẳng (H) giới hạn đường (C) :

2 

y

x , hai đường thẳng x = , x = trục

hoành Xác định giá trị a để diện tích hình phẳng (H) lna

2 Theo chương trình nâng cao : Câu IV.b ( 2,0 điểm ) :

Trong không gian với hệ tọa độ Oxyz , cho điểm M ( 1; 4; 2)

 hai mặt phẳng

(P1) : 2x y z  6 0 , (P2) :x2y 2z 2

a Chứng tỏ hai mặt phẳng (P1) (P2) cắt

Viết phương trình tham số giao tuyến  hai mặt phằng

b Tìm điểm H hình chiếu vng góc điểm M giao tuyến 

Câu V.b ( 1,0 điểm ) :

Cho hình phẳng (H) giới hạn đường (C) : y =

2

(4)

Câu V.b ( 1,0 điểm ) :

Tìm nghiệm phương trình

z z , z số phức liên hợp số phức z

ĐỀ 7

I PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( điểm ) Câu I ( 3,0 điểm )

Cho hàm số yx33x2 4 có đồ thị (C) a.Khảo sát biến thiên vẽ đồ thị (C)

b.Cho họ đường thẳng (dm) :y mx  2m16 với m là tham số Chứng minh (dm) cắt đồ thị (C)

tại điểm cố định I Câu II ( 3,0 điểm ) a.Giải bất phương trình

1

1

( 1) ( 1)

 

  

x

x x

b.Cho

1

0

( ) 2

f x dx

với f hàm số lẻ Hãy tính tích phân : I =

0

1

( )

 f x dx

c.Tìm giá trị lớn giá trị nhỏ có hàm số

2

4

2 

x x

y .

Câu III ( 1,0 điểm )

Cho hình lăng trụ ABC.A’B’C’ có đáy ABC tam giác cạnh a Hình chiếu vng góc A’ xuống mặt phẳng (ABC) trung điểm AB Mặt bên (AA’C’C) tạo với đáy góc 45

Tính thể tích khối lăng trụ

II PHẦN RIÊNG ( điểm ) 1.Theo chương trình chuẩn : Câu IV.a ( 2,0 điểm ) :

Trong không gian với hệ tọa độ Oxyz Viết phương trình mặt phẳng (P) qua O , vng góc với mặt phẳng (Q) :x y z  0 cách điểm M(1;2;1) khoảng 2

Câu V.a ( 1,0 điểm ) : Cho số phức 1  

i z

i Tính

giá trị z2010

2.Theo chương trình nâng cao : Câu IV.b ( 2,0 điểm ) :

Trong không gian với hệ tọa độ Oxyz , cho đường

thẳng (d ) :

1 2

1    

    

x t

y t

z mặt phẳng (P) :

2x y  2z1 0

a Viết phương trình mặt cầu có tâm nằm (d) , bán kính tiếp xúc (P)

b Viết phương trình đường thẳng () qua M(0;1;0) , nằm (P) vng góc với

đường thẳng (d) Câu V.b ( 1,0 điểm ) :

Trên tập số phức , tìm B để phương trình bậc hai

2 0

  

z Bz i có tổng bình phương hai nghiệm bằng

ĐỀ 8

I PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( điểm ) Câu I ( 3,0 điểm )

Cho hàm số

2

  x

x

y

có đồ thị (C) a.Khảo sát biến thiên vẽ đồ thị (C)

b.Chứng minh đường thẳng (d) : y = mx  42m qua điểm cố định đường cong (C) m thay đổi

Câu II ( 3,0 điểm )

a.Giải phương trình 2

1

log (2 1).log (2 2) 12

  

x x

b.Tính tích phân : I =

0

2 /

sin (2 sin )

 

x dx x

c.Viết phương trình tiếp tuyến với đồ thị

2 3 1

( ) :

2   

x x

C y

x , biết tiếp tuyến song song

với đường thẳng (d) : 5x 4y 4 0 Câu III ( 1,0 điểm )

Cho hình chóp S,ABC Gọi M điểm thuộc cạnh SA cho MS = MA Tính tỉ số thể tích hai khối chóp M.SBC M.ABC

II PHẦN RIÊNG ( điểm ) Theo chương trình chuẩn : Câu IV.a ( 2,0 điểm ) :

Trong không gian với hệ tọa độ Oxyz , cho tam giác ABC có đỉnh A,B,C nằm trục Ox,Oy,Oz có trọng tâm G(1;2;1) Hãy tính diện tích tam giác ABC

Câu V.a ( 1,0 điểm ) :

Cho hình phẳng (H) giới hạn đường ( C ) : y =

2

x , (d) : y = 6  x trục hồnh Tính diện tích của hình phẳng (H)

Theo chương trình nâng cao : Câu IV.b ( 2,0 điểm ) :

Trong khơng gian với hệ tọa độ Oxyz , cho hình lập phương ABCD.A’B’C’D’ Biết A’(0;0;0) , B’(a;0;0),D’(0;a;0) , A(0;0;a) với a>0 Gọi M,N trung điểm cạnh AB B’C’

a Viết phương trình mặt phẳng (P) qua M song song với hai đường thẳng AN

BD’

b Tính góc khoảng cách hai đường thẳng AN BD’

Câu V.b ( 1,0 điểm ) :

Tìm hệ số a,b cho parabol (P) : y2x2ax b tiếp xúc với hypebol (H)

1 

y

(5)

4  i

ĐỀ 9

I PHẦN CHUNG CHO TẤT CẢ THÍ SINH(7 điểm ) Câu I ( 3,0 điểm )

Cho hàm số yx3 3x1 có đồ thị (C) a.Khảo sát biến thiên vẽ đồ thị (C)

b.Viết phương trình tiếp tuyến với đồ thị (C) qua điểm M(

14

9 ; 1) Câu II ( 3,0 điểm ) a.Cho hàm số

2

 

x x

y e Giải phương trình

2

  

y y y

b.Tính tích phân :

2

2

sin (2 sin )

 

x

I dx

x

c Tìm giá trị lớn giá trị nhỏ hàm số

3

2sin cos 4sin

   

y x x x

Câu III ( 1,0 điểm )

Một hình nón có đỉnh S , khoảng cách từ tâm O đáy đến dây cung AB đáy a , SAO 30,

 60

SAB Tính độ dài đường sinh theo a

II PHẦN RIÊNG ( điểm ) 1.Theo chương trình chuẩn : Câu IV.a ( 2,0 điểm ) :

Trong không gian với hệ tọa độ Oxyz , cho hai đường thẳng

1

( ) :

2

 

  

 

x y z

,

2

( ) :

4    

      

x t

y t

z

a Chứng minh đường thẳng ( )1 đường

thẳng ( )2 chéo

b Viết phương trình mặt phẳng ( P ) chứa đường thẳng ( )1 song song với đường thẳng ( )2

Câu V.a ( 1,0 điểm ) :

Giải phương trình x3 8 0 tập số phức 2.Theo chương trình nâng cao :

Câu IV.b ( 2,0 điểm ) :

Trong không gian với hệ tọa độ Oxyz cho điểm M(2;3;0) , mặt phẳng

(P ) :x y 2z 1 0 mặt cầu (S) :

2 2 2 4 6 8 0

      

x y z x y z

a Tìm điểm N hình chiếu điểm M lên mặt phẳng (P)

b Viết phương trình mặt phẳng (Q) song song với (P) tiếp xúc với mặt cầu (S)

Câu V.b ( 1,0 điểm ) :

Biểu diễn số phức z = 1+ i dạng lượng giác

ĐỀ SỐ 10

I PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( điểm ) Câu I ( 3,0 điểm ) Cho hàm số : y = – x3 + 3mx – m

có đồ thị ( Cm )

1.Tìm m để hàm số đạt cực tiểu x = – 2.Khảo sát hàm số ( C1 ) ứng với m = –

3.Viết phương trình tiếp tuyến với ( C1 ) biết tiếp tuyến

vng góc với đường thẳng có phương trình  6

x y

Câu II ( 3,0 điểm )

1.Giải bất phương trình: log20,2xlog0,2x 0

2.Tính tích phân

4

0

t anx cos



I dx

x

3.Cho hàm số y=

3

1

3xx có đồ thị ( C ) Tính thể tích vật thể trịn xoay hình phẳng giới hạn ( C ) đường thẳng y=0,x=0,x=3 quay quanh 0x Câu III ( 1,0 điểm )

Cho hình vng ABCD cạnh a.SA vng góc với mặt phẳng ABCD,SA= 2a

a.Tính diện tích mặt cầu ngoại tiếp hình chóp S.ABCD b.Vẽ AH vng góc SC.Chứng minh năm điểm H,A,B,C,D nằm mặt cầu

II PHẦN RIÊNG ( điểm ) 1.Theo chương trình chuẩn : Câu IV.a ( 2,0 điểm )

Cho D(-3;1;2) mặt phẳng ( ) qua ba điểm A(1;0;11), B(0;1;10), C(1;1;8)

1.Viết phương trình tham số đường thẳng AC 2.Viết phương trình tổng quát mặt phẳng ( ) 3.Viết phương trình mặt cầu tâm D bán kính R= 5.Chứng minh mặt cầu cắt ( )

Câu V.a ( 1,0 điểm )

Xác định tập hợp điểm biểu diển số phức Z mặt phẳng tọa độ thỏa mãn điều kiện :Z Z 3 4 2.Theo chương trình nâng cao

Câu IVb/.

Cho A(1,1,1) ,B(1,2,1);C(1,1,2);D(2,2,1) a.Tính thể tích tứ diện ABCD

b.Viết phương trình đường thẳng vng góc chung AB CB

c.Viết phương trình mặt cầu (S) ngoại tiếp tứ diện ABCD

CâuVb/.

a/.Giải hệ phương trình sau:

2

2

4

log (2 ) log (2 )

  

 

   

 

x y

x y x y

b/.Miền (B) giới hạn đồ thị (C) hàm số

x y

x  

(6)

ĐỀ SỐ 11

I PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( điểm )

Câu I ( 3,0 điểm )

Cho hàm số y = x3 + 3x2 + mx + m – m tham số

1.Tìm m để hàm số có cực đại cực tiểu 2.Khảo sát vẽ đồ thị hàm số m = Câu II ( 3,0 điểm )

1.Tính diện tích hình phẳng giới hạn đồ thị hàm số y = ex ,y = đường thẳng x = 1.

2.Tính tích phân

2

sin cos

 

x

I dx

x

3.Giải bất phương trình log(x2 – x -2 ) < 2log(3-x)

Câu III ( 1,0 điểm )

Cho hình nón có bán kính đáy R,đỉnh S Góc tạo đường cao đường sinh 600.

1.Hãy tính diện tích thiết diện cắt hình nón theo hai đường sinh vng góc

2.Tính diện tích xung quanh mặt nón thể tích khối nón

II PHẦN RIÊNG ( điểm ) 1.Theo chương trình chuẩn : Câu IV.a ( 2,0 điểm ) :

Trong không gian với hệ tọa độ Oxyz cho ba điểm :A(1;0;-1); B(1;2;1); C(0;2;0) Gọi G trọng tâm tam giác ABC

1.Viết phương trình đường thẳng OG

2.Viết phương trình mặt cầu ( S) qua bốn điểm O,A,B,C

3.Viết phương trình mặt phẳng vng góc với đường thẳng OG tiếp xúc với mặt cầu ( S)

Câu V.a ( 1,0 điểm )

Tìm hai số phức biết tổng chúng tích chúng

2.Theo chương trình nâng cao Câu IVb/.

Trong không gian với hệ trục tọa độ Oxyz cho bốn điểm A, B, C, D với A(1;2;2), B(-1;2;-1),

6 ;

                     

     

OC i j k OD i j k

1.Chứng minh ABCD hình tứ diện có cặp cạnh đối

2.Tính khoảng cách hai đường thẳng AB CD 3.Viết phương trình mặt cầu (S) ngoại tiếp hình tứ diện ABCD

Câu Vb/. Cho hàm số:

4  

y x

x(C)

1.Khảo sát hàm số

2.Viết phương trình tiếp tuyến đồ thị hàm số biết

2) Tính thể tích khối trịn xoay sinh quay (B) quanh trục Ox, trục Oy

ĐỀ SỐ 12

I PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( điểm ) Câu I ( 3,0 điểm )

Cho hàm số số y = - x3 + 3x2– 2, gọi đồ thị hàm số

( C)

1.Khảo sát biến thiên vẽ đồ thị hàm số 2.Viết phương trình tiếp tuyến với đồ thị ( C) điểm có hồnh độ nghiệm

của phương trình y// = 0.

Câu II ( 3,0 điểm )

1.Tìm giá trị lớn nhỏ hàm số a

4

( )

2   

f x x

x 1; 2

b f(x) = 2sinx + sin2x

3 0;

2       

2.Tính tích phân  

2

0

sin cos

 

I x x xdx

3.Giải phương trình :34 8 4.32 5 27 0

  

x x

Câu III ( 1,0 điểm )

Một hình trụ có diện tích xung quanh S,diện tích đáy diện tích mặt cầu bán kính a Hãy tính a) Thể tích khối trụ

b) Diện tích thiết diện qua trục hình trụ II PHẦN RIÊNG ( điểm )

1.Theo chương trình chuẩn : Câu IV.a ( 2,0 điểm ) :

Trong không gian với hệ tọa độ Oxyz cho mặt cầu ( S) : x2 + y2 + z2 – 2x + 2y + 4z – = hai đường

thẳng  1  2

2

: ; :

2 1

  

 

    

   

x y x y z

x z

1.Chứng minh 1 2 chéo

2.Viết phương trình tiếp diện mặt cầu ( S) biết tiếp diện song song với hai đường thẳng 1 2

Câu V.a ( 1,0 điểm ).

Tìm thể tích vật thể trịn xoay thu quay hình phẳng giới hạn đường y= 2x2 và y = x3

xung quanh trục Ox

2.Theo chương trình nâng cao Câu IVb/.

Trong khơng gian với hệ trục tọa độ Oxyz cho mặt phẳng (P)( ) :P x y z  3 0 và đường thẳng (d)

có ph ương trình giao tuyến hai mặt phẳng:

  

x z và 2y-3z=0

1.Viết phương trình mặt phẳng (Q) chứa M (1;0;-2) qua (d)

2.Viết phương trình tắc đường thẳng (d’) hình chiếu vng góc (d) lên mặt phẳng (P)

(7)

tiếp tuyến vng góc với đường thẳng

2008

 

y x

§Ị sè 13 I PHẦN CHUNG

Câu I

Cho hàm số yx33x21 có đồ thị (C) a Khảo sát vẽ đồ thị (C)

b Viết phương trình tiếp tuyến đồ thị (C) A(3;1)

c Dùng đồ thị (C) định k để phương trình sau có nghiệm phân biệt x3 3x2 k 0.

Câu II

Giải phương trình sau :

a log (22 x 1) 3log (2 x1)2log 32 02  b. 4x 5.2x 4 2 Tính tích phân sau :

2

3

(1 2sin ) cos 

 x xdx

I

3 Tìm MAX , MIN hàm số

  2 3 7

3

   

f x x x x

đoạn [0;2] Câu III :

Cho hình chóp tứ giác S.ABCD O tâm đáy ABCD Gọi I trung điểm cạnh đáy CD

a.Chứng minh CD vng góc với mặt phẳng (SIO)

b Giả sử SO = h mặt bên tạo với đáy hình chóp góc 

Tính theo h  thể tích hình chóp S.ABCD II PHẦN DÀNH CHO HỌC SINH TỪNG BAN 1 Theo chương trình Chuẩn :

Câu IV.a

Trong không gian với hệ trục Oxyz, cho A(1;2;3) và đường thẳng d có phương trình

1

1

2

 

y

x z

Viết phương trình mặt phẳng  qua A vng góc d

2 Tìm tọa độ giao điểm d mặt phẳng 

Câu V.a Giải phương trình sau tập hợp số phức:

22 17 0

z z

2 Theo chương trình Nâng cao :

Câu IV.b Trong không gian với hệ trục Oxyz, cho A(1;0;0), B(0;2;0), C(0;0;4)

1) Viết phương trình mặt phẳng  qua ba điểm A, B, C Chứng tỏ OABC tứ diện

2) Viết phương trình mặt cầu (S) ngoi tip t din OABC

Cõu V.b Giải phơng trình sau tập số phức: z3 - (1 + i)z2 + (3 + i)z - 3i =

Tìm phần thực phần ảo số phức sau: (2+i)3-(3-i)3.

§Ị sè1 I PHẦN CHUNG

Câu I: Cho hàm số y =

1

2xmx 2 có đồ thị (C) 1) Khảo sát vẽ đồ thị (C) hàm số m = 2) Dựa vào đồ thị (C), tìm k để phương trình

4

1 3

2xx 2 k = có nghiệm phân biệt.

Câu II :1 Giải bất phương trình

log (2 x 3) log ( 2 x 2) 1

Tính tích phân a

1

 

x

I dx

x

b

2

0

1  

I x dx

Tìm GTLN, GTNN hàm số f x( ) x2 4x5 đoạn [ 2;3] .

Câu III: Cho hình chóp tứ giác SABCD có cạnh đáy a, góc mặt bên mặt đáy 600.

Tính thể tích khối chóp SABCD theo a II PHẦN RIÊNG

1 Theo ch ươ ng trình Chu ẩ n :

Câu IV a Trong Kg Oxyz cho điểm A(2;0;1), mặt phẳng (P): 2x y z   1

đường thẳng (d):

2    

     

x t

y t

z t .

1 Lập phương trình mặt cầu tâm A tiếp xúc với mặt phẳng (P)

2 Viết phương trình đường thẳng qua điểm A, vng góc cắt đường thẳng (d)

Câu V.a Viết PT đường thẳng song song với đường thẳng yx3 tiếp xúc với đồ thị hàm số

2

 

x y

x

2 Theo ch ươ ng trình Nâng cao :

Câu IV.b Trong Kg Oxyz cho điểm A(3;4;2), đường thẳng (d):

1

1

  

x y z

mặt phẳng (P): 4x2y z 1 0 .

(8)

§Ị sè1 I PHẦN CHUNG

Câu I Cho hàm sè

2 1  

x y

x

1. Khảo sát vẽ đồ thị (C) hàm số

2 Tìm m để đường thẳng d : y = - x + m cắt (C) tại hai điểm phân biệt

Câu II.

1 Giải phương trình : log (2 x3) log ( x1) 3

2 Tính tích phân : a I=

3 1

xxdx

b J=

2

2 0( 2)

xxdx

3 Tìm giá trị lớn nhỏ hàm số y = cos2x – cosx + 2

Câu III : Cho hình chóp S.ABCD có đáy ABCD là hình vng cạnh a SA (ABCD) SA = 2a

1. Chứng minh BD vng góc với mặt phẳng SC

2. Tính thể tích khối chóp S.BCD theo a II PHẦN RIÊNG

1 Theo chương trình Chuẩn :

Câu IV.a Trong khơng gian Oxyz cho ba điểm A( 2; -1 ;1), B( 0;2 ;- 3) C( -1 ; ;0)

1. Chứng minh A,B,C khơng thẳng hàng .Viết phương trình mặt phẳng (ABC)

2. Viết phương trình tham số đường thẳng BC

Câu V.a Giải phương trình :

2

1

  

 

i i

z

i i

2 Theo chương trình Nâng cao :

Câu IV.b Trong không gian cho hai điểm A(1;0;-2) , B( -1 ; -1 ;3) mặt phẳng

(P) : 2x – y +2z + =

1 Viết phương trình mặt phẳng ( Q) qua hai điểm A,B vng góc với mặt phẳng (P)

2 Viết phương trình mặt cầu có tâm A tiếp xúc với mặt phẳng (P)

Câu V.b Cho hàm số

2

x 3x y

x  

 (c) Tìm đồ thị (C) điểm M cách trục tọa độ

Câu V.b Viết PT đ/thẳng vuông góc với (d)

3  

y x

tiếp xúc với đồ thị hàm số

2 1

1   

x x y

x

§Ị sè16 I - Phần chung

Câu I Cho hàm số yx33x có đồ thị (C) Khảo sát vẽ đồ thị (C)

Viết phương trình tiếp tuyến (C) vng góc với đường thẳng (d) x-9y+3=0

Câu II

1 Giải phương trình : log3xlog 93 x2 9

2 Giải bất phương trình : 31x31x10

3 Tính tích phân:  

2

sin cos sin

 

I x x x x dx

4 Tìm GTLN, GTNN hàm số sau:

2

( )  5 6

f x x x .

Câu III : Tính thể tích khối tứ giác chóp S.ABCD biết SA=BC=a

II PHẦN RIÊNG

1 Theo chương trình Chuẩn : Câu IV.a

Trong không gian (Oxyz) cho đường thẳng (d):

3    

      

x t

y t

z t

và mặt phẳng (P): 2x+y+2z =0

Chứng tỏ (d) cắt (P).Tìm giao điểm

Tìm điểm M thuộc (P) cho khoảng cách từ M đến (P) 2.Từ lập phương trình mặt cầu có tâm M tiếp xúc với (P)

Câu V.a Cho số phức z 1 i 3.Tính z2( )z 2 Theo chương trình Nâng cao :

Câu IV.b

Trong không gian với hệ tọa độ Oxyz, cho (S) : x2 +

y2 + z2 – 2x + 2y + 4z – = vaø

hai đường thẳng (1) :

2 2    

  

x y

x z , (

2) :

1

1 1

 

 

x y z

1) Chứng minh (1) (2) chéo

2) Viết phương trình tiếp diện mặt cầu (S), biết tiếp diện song song với hai đường thẳng (1)

(2)

Câu V.b Cho hàm số :

2 4

2( 1)   

x x y

x , có đồ thị là

(9)

§Ị sè17 A - PHẦN CHUNG

Câu I: Cho hàm số y = (2 – x2)2 có đồ thị (C)

1) Khảo sát vẽ đồ thị (C) hàm số

2) Dựa vào đồ thị (C), biện luận theo m số nghiệm phương trình :

x4 – 4x2 – 2m + =

Câu II: Giải phương trình:

a log22x6log4x4 b 4x 2.2x1 3

2 Tính tích phân :

0

16

4

 

 

x

I dx

x x

Tìm giá trị lớn nhỏ hàm số y = f(x) = x4 – 2x3 + x2 trên

đoạn [-1;1]

Câu III: Trong khơng gian cho hình vng ABCD cạnh 2a Gọi M,N trung điểm cạnh AB CD Khi quay hình vng ABCD xung quanh trục MN ta hình trụ trịn xoay Hãy tính thể tích khối trụ trịn xoay giới hạn hình trụ nói II PHẦN RIÊNG

1 Theo chương trình Chuẩn :

Câu IV.a Trong không gian Oxyz cho điểm A(5;-6;1) B(1;0;-5)

1 Viết phương trình tắc đường thẳng () qua B có véctơ phương u(3;1;2) Tính cosin góc

giữa hai đường thẳng AB ()

2 Viết phương trình mặt phẳng (P) qua A chứa () Câu V.a Tính thể tìch hình trịn xoay hình phẳng giới hạn đường sau quay quanh trục Ox : y = - x2 + 2x y = 0

2 Theo chương trình Nâng cao :

Câu IV.b Trong không gian Oxyz cho điểm A(3;-2;-2), B(3;-2;0), C(0;2;1), D(-;1;2)

1) Viết phương trình mặt phẳng (BCD) Từ suy ABCD tứ diện

2) Viết phương trình mặt cầu (S) có tâm A tiếp xúc với mặt phẳng (BCD)

Câu Vb : Tính thể tìch hình trịn xoay hình phẳng giới hạn đường sau quay quanh trục Ox : y = cosx , y = 0, x = 0, x = 

§Ị sè18

II. PHẦN CHUNG

Câu I : Cho hàm số

2 3  

 

x y

x ( C )

1 Khảo sát biến thiên vẽ đồ thị ( C ) hàm số

2 Gọi A giao điểm đồ thị với trục tung Tìm phương trình tiếp tuyến ( C ) A

Câu II :

1 Giải bất phương trình : 3

log

1 

 

x x

2 Tính tích phân:  

4

4

0

cos sin

 

I x x dx

3 Chứng minh với hàm số: y = x.sinx Ta có:  2( ' sin )  '' 0

x y y x x y

4 Giải phương trình sau C : 3 2 0

  

x x

Câu III : Cho hình chóp tứ giác S.ABCD có cạnh đáy a, cạnh bên a 3

1) Tính thể tích hình chóp S.ABCD

2) Tính khoảng cách giửa hai đường thẳng AC SB

II PHẦN RIÊNG

1 Theo chương trình Chuẩn : Câu IV.a

Trong khơng gian với hệ trục toạ độ Oxyz cho điểm A(1,0,0); B(0,2,0); C(0,0,3)

1 Viết phương trình tổng quát mặt phẳng qua ba điểm:A, B, C

2 Lập phương trình đường thẳng (d) qua C vng góc mặt phẳng (ABC)

Câu V.a Tính diện tích hình phẳng giới hạn (P): y = x2 tiếp tuyến phát xuất từ A (0, -2).

2 Theo chương trình Nâng cao :

Câu IV.b Trong không gian với hệ trục toạ độ Oxyz cho điểm A(1,0,0); B(0,2,0); C(0,0,3)

1 Viết phương trình tổng quát mặt phẳng qua ba điểm:A, B, C

2 Gọi (d) đường thẳng qua C vuông góc mặt phẳng (ABC)

Tìm tọa độ giao điểm đường thẳng (d) mặt phẳng (Oxy)

Câu V.b Tính diện tích hình phẳng giới hạn (C ) : y =

2

1 

x

x , đường tiệm cận xiên đường thẳng x =

2 x =  (  > 2) Tính  để diện tích S = 16 (đvdt)

(10)

§Ị sè19 I PHẦN CHUNG

Câu I : Cho hàn số y = x3 + 3x2 + 1.

1) Khảo sát biến thiên vẽ đồ thị (C) hàm số

2) Dựa vào đồ thị (C), biện luận số nghiệm phương trình sau theo m :

x3 + 3x2 + = 2

m

Câu II :

1 Giải phương trình: 25x – 7.5x + = 0.

2 Tính tích phân a I =

1

1

x dx

b J =

2

0

( 1)sin

x x dx

3 Tìm giá trị lớn nhất, giá trị nhỏ hàm số: f(x) = sinx + sin2x

trên đoạn 0;

2       

Câu III : Cho hình chóp tứ giác S.ABCD có đáy là hình vng cạnh a, cạnh SA = 2a SA vng góc với mặt phẳng đáy ABCD

1 Hãy xác định tâm bán kính mặt cầu ngoại tiếp hình chóp

2 Tính thể tích khối chóp S.ABCD II PHẦN RIÊNG

1 Theo chương trình Chuẩn :

Câu IV.a Cho mặt cầu (S) có đường kính AB biết A(6; 2; -5), B(-4; 0; 7)

Tìm toạ độ tâm I bán kính r mặt cầu (S)

Lập phương trình mặt cầu (S)

Câu V.a Tính giá trị biểu thức Q = ( + 5i )2 +

( - 5i )2

2 Theo chương trình Nâng cao :

Câu IV.b Trong không gian Oxyz, cho điểm A(-1; 2; 0), B(-3; 0; 2), C(A(-1; 2; 3),

D(0; 3; -2)

1 Viết phương trình mặt phẳng (ABC) Viết phương trình mặt phẳng ( ) chứa AD song song với BC

Cõu V.b Giải phơng trình sau tập số phức: (z + 2i)2 + 2(z + 2i) - = 0

Câu I: Cho hàm số

2 1  

x y

x , gọi đồ thị của

hàm số (H)

1 Khảo sát biến thiên vẽ đồ thị hàm số cho

2 Viết phương trình tiếp tuyến đồ thị (H) điểm M02;5

Câu II: Giải phương trình :6.9x13.6x6.4x0

2 Tính tích phân a  

1

x 1

x dx

b  

6

0

1 sin

x xdx

3 Tìm giá trị lớn nhất, nhỏ hàm số

3

2 12

   

y x x x [1;3]

Câu III : Tính thể tích khối chóp S.ABC cho biết AB=BC=CA= 3; góc cạnh SA,SB,SC với mặt phẳng (ABC) 600.

II PHẦN RIÊNG

1 Theo chương trình Chuẩn :

Câu IV.a Trong khơng gian Oxyz cho đường thẳng

1

:

1 2

  

 

x y z

d

điểm A(3;2;0)

1 Tìm tọa độ hình chiếu vng góc H A lên d Tìm tọa độ điểm B đối xứng với A qua đường thẳng d

Câu V.a Cho số phức:z 1 2i 2i2 Tính giá trị biểu thức A z z .

2 Theo chương trình Nâng cao :

Câu IV.b Trong không gian Oxyz cho đường thẳng

1

1

2

: d : 2

1       

 

 

 

   

   

x t

x y z

d y t

x y z

z t

1) Viết phương trình mặt phẳng chứa d1 song song

với d2

2) Cho điểm M(2;1;4) Tìm tọa độ điểm H d2

cho độ dài MH nhỏ

Cõu V.b Giải phơng trình sau tËp sè phøc:

2

4

5

 

 

  

   

 

z i z i

z i z i

(11)

§Ị sè21

I PHẦN CHUNG

Câu I : Cho hàm sốyx3 3x1

1.Khảo sát biến thiên vẽ đồ thị C hàm số 2.Dựa vào đồ thị C biện luận theo m số nghiệm phương trình x33x 1 m0.

Câu II : 1.Giải phương trình : 1 2

  

x x

2.Tínhtíchphân:a

3

sin cos

 x x

I dx

x .b.  

4

1

1 

I dx

x x

1 Tìm modul argumen số phức sau

2 16

1

     

z i i i i

Câu III : Cho hình nón đỉnh S, đáy hình trịn tâm O bán kính R, góc đỉnh là2 Một mặt phẳng (P) vng góc với SO I cắt hình nón theo đường trịn (I) Đặt SIx.

1 Tính thể tích V khối nón đỉnh O, đáy hình trịn (I) theo  x, R.

2 Xác định vị trí điểm I SO để thể tích V khối nón lớn

II PHẦN RIÊNG

1 Theo chương trình Chuẩn : Câu IV.a Cho đường thẳng

3

:

2

  

 

x y z

d

mặt phẳng  : 4x y z  4 0

Tìm tọa độ giao điểm A d   Viết phương trình mặt cầu S tâm A tiếp xúc mặt phẳng (Oyz)

Tính góc  đường thẳng d mặt phẳng

 

Câu V.a Viết phương tình tiếp tuyến của

 C :yx36x29x3

điểm có hồnh độ bằng2. 2 Theo chương trình Nâng cao :

Câu IV.b Trong khơng gian với hệ tọa độ Oxyz cho mặt phẳng  có phương trình

  : 2x3y6z18 0 Mặt phẳng  cắt Ox, Oy, Oz A, B C

Viết phương trình mặt cầu  S ngoại tiếp tứ diện OABC Tình tọa độ tâm mặt cầu

Tính khoảng cách từM x y z ; ; đến mặt phẳng  Suy tọa độ điểm M cách mặt tứ diện

I PHẦN CHUNG CHO TẤT CẢ THÍ SINH Câu I

1 Khảo sát vẽ đồ thị hàm số yx3 3x1 (C) Viết phương trình tiếp tuyến với đồ thị (C) biết tiếp tuyến qua điểm A(1;1)

Câu II

1 Giải bất phương trình 3.21

  

x x

2 Tính tích phân

6

0

sin cos



I x xdx

3 Tìm giá trị lớn nhất, giá trị nhỏ hàm số: f(x) = 2x3 – 3x2 – 12x + đoạn 2;5 / 2 .

Câu III Cho hình chóp S.ABC có đáy ABC cân A, đường thẳng SA vng góc với mặt phẳng (ABC).Gọi G trọng tâm tam giác SBC Biết

3 , ,

  

SA a AB a BC a.

1) Chứng minh đường thẳng AG vng góc với đường thẳng BC

2) Tính thể tích khối chóp G.ABC theo a II PHẦN RIÊNG

1 Theo chương trình Chuẩn :

Câu IV.a Trong không gian với hệ tọa độ Oxyz, cho đường thẳng  

2

:

1 2

  

  

x y z

mặt phẳng

 P x y z:    5 0.

1 Tìm tọa độ giao điểm đường thẳng   mặt phẳng (P)

2 Viết phương trình hình chiếu vng góc đường thẳng   mặt phẳng (P)

Câu V.a Giải phương trình z3 8 0 tập hợp số phức

2 Theo chương trình Nâng cao :

Câu IV.b Trong khơng gian với hệ tọa độ Oxyz, cho

điểm A1; 2; 2 và đường thẳng

 

2

:

2    

     

x t

d y t

z t .

1 Viết phương trình mặt phẳng (α) chứa điểm A đường thẳng (d)

2 Tìm tọa độ điểm A’ đối xứng với điểm A qua đường thẳng (d)

Câu V.b Tính thể tích khối trịn xoay hình phẳng giới hạn đường sau quay quanh trục Ox:

2 2 2

1   

x x

y

x , tieäm cận xiên, x2,x3.

(12)

OABC vùngx0, y0, z0

Câu V.b Viết phương trình tiếp tuyếncủa

 

2 3 1

:

2   

x x

C y

x song song với đường thẳng

: 2 5

d y x

§Ị sè23 I PHẦN CHUNG

Câu I: Cho hàm số y =

4 x3 – 3x có đồ thị (C)

1) Khảo sát hàm số

2) Cho điểm M thuộc đồ thị (C) có hoành độ x = 3 Viết PT đường thẳng d qua M tiếp tuyến (C)

3) Tính diện tích hình phẳng giới hạn (C) tiếp tuyến M

Câu II:

1 Giải bất phương trình: 62x32 3x7 3x1

2 Tính tích phân : a

1

5

(1 )  

I x x dx

b

 

6

0

sin sin

x x dx

3 Cho hàm số: ycos 32 x Chứng minh rằng: y’’ + 18. ( 2y-1 ) =

Câu III: Cho hình chóp tứ giác S.ABCD có cạnh đáy a cạnh bên a 2.

1 Tính thể tích hình chóp cho

2 Tính khoảng cách hai đường thẳng AC SB

II PHẦN RIÊNG

1 Theo chương trình Chuẩn :

Câu IV.a Trong khơng gian Oxyz cho điểm M(1,1,1) mặt phẳng ( ) : 2  x3y z  5 0 Viết phương trình đường thẳng d qua điểm M vng góc với mặt phẳng ( ) .

Câu V.a Giải phương trình sau tập hợp số phức: x26x10 0

2 Thực phép tính sau:

a i(3i)(3i) b 2 3 i(5i)(6i) 2 Theo chương trình Nâng cao :

Câu IV.b Trong không gian Oxyz cho hai đường thẳng

1

2

: :

1

  

 

 

       

    

 

x t x

y t y t

z z t

1 Viết phương trình mặt phẳng ( ) chứa

I Phần chung

Câu I : Cho hàm số y = x4 – 2x2 + có đồ thị (C)

1) Khảo sát biến thiên vẽ đồ thị (C) hàm số

2) Dùng đồ thị (C), biện luận theo m số nghiệm pt : x4 – 2x2 + - m = 0.

3) Viết phương trình tiếp tuyến với (C) biết tiếp tuyến qua điểm A(0 ; 1)

Câu II :1 Giải phương trình : 16x17.4x16 0 . Tính tích phân sau: a I =

2

5

(1 )

x x dx

b J =

2

0

(2 1).cos

x xdx

3 Định m để hàm số : f(x) = 3x3 -

1

2mx2 – 2x + 1

đồng biến R

Câu III : Cho hình chóp S.ABCD có cạnh đáy a, góc SAC 450

a Tính thể tích hình chóp

b Tính thể tích mặt cầu ngoại tiếp hình chóp S.ABCD II PHẦN RIÊNG

1 Theo chương trình Chuẩn : Câu IV.a

1 Viết phương trình đường thẳng qua M(1,2,-3) vng góc với mặt phẳng (P): x - 2y + 4z - 35=0

2 Viết phương trình mặt phẳng qua ba điểm A(2,-1,3), B(4,0,1), C(-10,5,3)

Câu V.a Giải hệ PT :

6 2.3 12

  

 

  

x y

x y

2 Theo chương trình Nâng cao :

Câu IV.b Trong không gian với hệ tọa độ Oxyz cho điểm M(0 ; 1; –3), N(2 ; ; 1)

1) Viết phương trình tổng quát mặt phẳng (P) qua N vng góc với MN

2) Viết phương trình tổng quát mặt cầu (S) qua điểm M, điểm N tiếp xúc với mp(P)

Câu V.b Giải hệ PT :

log (6 ) log (6 )

 

  

 

 

x y

x y

y x

§Ị sè26 I PHẦN CHUNG ( điểm )

(13)

1 song song 2

2 Tính khoảng cách đường thẳng

2 mặt phẳng ( )

Câu V.b Tìm m để đồ thị (C) :

 

4 1

   

y x mx m

và đường thẳng (d) : y=2(x-1) tiếp xúc điểm có x =

§Ị sè25 I PHẦN CHUNG

Câu I Cho hàm số yx33x21 (C) a/ Khảo sát vẽ đồ thị (C)

b/ Viết phuơng trình tiếp tuyến đồ thị (C) điểm A(-1;3)

Câu II:

1 Giải phương trình :

2 3

2

logxlog x  

2 Giải bpt : 31 22 1 122 0

  

x

x x

3 Tính tích phân  

4

2

0

cos sin

 

I x x dx

Câu III: Cho hình chóp S.ABCD có cạnh đáy a, cạnh bên SA a 2.

a/ Chứng minh ACSBD.

b/ Tính thể tích hình chóp S.ABCD theo a II PHẦN RIÊNG

1 Theo chương trình Chuẩn :

Câu IV.a Trong không gian Oxyz, cho điểm M(1;2;3)

1 Viết phương trình mặt phẳng ( ) qua M song song với mặt phẳng x2y3z 0 .

2 Viết phương trình mặt cầu (S) có tâm I(1;1;1) tiếp xúc với mặt phẳng ( )

Câu V.a Giải phương trình 1 0

  

x x tập số

phức

2 Theo chương trình Nâng cao : Câu IV.b

1 Viết PT mp qua A(3,1,-1), B(2,-1,4) vng góc với mặt phẳng ( ) : 2x – y + 3z + =0

2 Tính diện tích hình phẳng giới hạn đồ thị hàm số y ex, trục hoành đường thẳng x=

Câu V.b Tìm m để đồ thị hàm số

2 1

1   

x mx y

x

có cực trị thoả yCĐ yCT =

thị (C)

1 Khảo sát biến thiên vẽ đồ thị (C)

2 Viết phương trình tiếp tuyến với đồ thị (C) qua điểm M(

14

9 ; 1) Câu II ( 3,0 điểm ) Cho hàm số

2

 

x x

y e Giải phương trình

2

  

y y y

2 Tính tìch phân :

/

2

sin (2 sin )

 

x

I dx

x

3 Tìm giá trị lớn giá trị nhỏ hàm số

3

2sin cos 4sin

   

y x x x

Câu III ( 1,0 điểm ) Một hình nón có đỉnh S , khoảng cách từ tâm O đáy đến dây cung AB đáy a , SAO30, SAB 60 Tính độ dài đường sinh theo a II PHẦN RIÊNG ( điểm )

1 Theo chương trình chuẩn :

Câu IV.a ( 2,0 điểm ) : Trong không gian với hệ tọa độ Oxyz , cho hai đường thẳng

1

1

( ) :

2

 

  

 

x y z

,

2

( ) :

4    

      

x t

y t

z

Chứng minh đường thẳng ( )1 đường

thẳng (2) chéo

Viết PTMP ( P ) chứa đường thẳng ( )1 song

song với đường thẳng (2)

Câu V.a ( 1,0 điểm ) : Giải phương trình x3 8 tập số phức

2 Theo chương trình nâng cao :

Câu IV.b ( 2,0 điểm ) :Trong không gian với hệ tọa độ Oxyz cho điểm M(2;3;0) , mặt phẳng (P ) :

2

   

x y z và mặt cầu (S) :

2 2 2 4 6 8 0

      

x y z x y z

Tìm điểm N hình chiếu điểm M lên mặt phẳng (P)

Viết phương trình mặt phẳng (Q) song song với (P) tiếp xúc với mặt cầu (S)

Câu V.b ( 1,0 điểm ) :

Biểu diễn số phức z = 1+ i dạng lượng giác

§Ị sè28 I I PHẦN CHUNG ( điểm ) Câu (4,0 điểm)

1 Khảo sát vẽ đồ thị (C) hàm số

3 3

 

(14)

§Ị sè 27 I I PHẦN CHUNG ( điểm )

Câu I ( 3,0 điểm ) Cho hàm số yx4 2x21 có đồ thị (C)

1 Khảo sát biến thiên vẽ đồ thị (C)

2 Dùng đồ thị (C ) , biện luận theo m số nghiệm thực phương trình x4 2x2 m0 (*)

Câu II ( 3,0 điểm ) Giải phương trình :

1

5 25

log (5 1).log (5 5)

  

x x

2 Tính tích phân : I =

1

0

(  )

x x e dxx

3 Tìm giá trị lớn giá trị nhỏ hàm số y = 2x33x212x2 [ 1; 2]

Câu III ( 1,0 điểm ) Cho tứ diện SABC có ba cạnh SA,SB,SC vng góc với đôi với SA = 1cm, SB = SC = 2cm Xác định tâm tính bán kính mặt cấu ngoại tiếp tứ diện , tính diện tích mặt cầu thể tích khối cầu

II PHẦN RIÊNG ( điểm ) 1 Theo chương trình chuẩn :

Câu IV.a ( 2,0 điểm ) : Trong không gian với hệ tọa độ Oxyz , cho điểm A( 2;1; 1) ,B(0;2; 1) ,C(0;3;0) , D(1;0;1)

a Viết phương trình đường thẳng BC

b Chứng minh điểm A,B,C,D không đồng phẳng

c Tính thể tích tứ diện ABCD

Câu V.a ( 1,0 điểm ) : Tính giá trị biểu thức

2

(1 ) (1 )

   

P i i

2 Theo chương trình nâng cao :

Câu IV.b ( 2,0 điểm ) : Trong không gian với hệ tọa độ Oxyz cho M(1; 1;1) , hai đường thẳng

1

1 ( ) :

1 

  

x y z

,

2

2 ( ) :

1        

  

x t

y t

z mặt phẳng (P) :

2

 

y z

a Tìm điểm N hình chiếu vng góc điểm M lên đường thẳng (2)

b Viết phương trình đường thẳng cắt hai đường thẳng ( ) ,( )1 2 nằm mặt phẳng (P)

Câu V.b ( 1,0 điểm ) : Tìm m để đồ thị hàm số

2 Dựa vào đồ thị (C), biện luận theo m số nghiệm phương trình x33x2 m0

3 Tính diện tích hình phẳng giới hạn đồ thị (C) trục hoành

Câu (1 điểm) Giải phương trình 22x29.2x 2 Câu (1 điểm) Giải phương trình 2x2 5x 4 0 trên tập số phức

Câu (2 điểm) Cho hình chóp S.ABCD có đáy ABCD hình vng cạnh a, cạnh bên SA vng góc với đáy, cạnh bên SB a 3.

1 Tính thể tích khối chóp S.ABCD

2 Chứng minh trung điểm cạnh SC tâm mặt cầu ngoại tiếp hình chóp S.ABCD

II II PHẦN RIÊNG ( điểm )

A Theo chương trình nâng cao :chọn câu 5a hoặc

câu 5b

Câu 5a (2,0 điểm) Tính tích phân

ln

ln

( 1)  

x x

x e e dx J

e .

2 Viết phương trình tiếp tuyến đồ thị hàm số

2 5 4

2   

x x

y

x biết tiếp tuyến song song với

đường thẳng y = 3x + 2006

Câu 5b (2,0 điểm) Trong không gian tọa độ Oxyz cho ba điểm A(2; 0; 0), B(0; 3; 0), C(0; 0; 6)

1 Viết phương trình mặt phẳng qua ba điểm A, B, C Tính diện tích tam giác ABC

2 Gọi G trọng tâm tam giác ABC Viết phương trình mặt cầu đường kính OG

B Theo chương trình chuẩn chọn câu 6a câu 6b

Câu 6a (2,0 điểm) Tính tích phân

1

0

(2 1)   x

K x e dx

2 Viết phương trình tiếp tuyến đồ thị hàm số

1  

x y

x điểm thuộc đồ thị có hoành độ x0 = 3.

Câu 6b (2,0 điểm) Trong không gian tọa độ Oxyz cho ba điểm A(1; 1; 2), B(0; 1; 1), C(1; 0; 4)

1 Chứng minh tam giác ABC vng Viết phương trình tham số đường thẳng AB

2 Gọi M điểm cho MB  2MC Viết phương trình mặt phẳng qua M vng góc với đường thẳng BC

§Ị sè30

I PHẦN CHUNG CHO THÍ SINH (8,0 điểm) Câu (3,5 điểm) Cho hàm sốy2x33x21, gọi đồ thị hàm số (C)

(15)

2

( ) :

1   

m

x x m

C y

x với m0 cắt trục hoành hai điểm phân biệt A,B cho tuếp tuyến với đồ thị hai điểm A,B vng góc

§Ị sè29

I PHẦN CHUNG CHO THÍ SINH (8,0 điểm) Câu (3,5 điểm) Cho hàm sốyx4 2x21, gọi đồ thị hàm số (C)

1 Khảo sát biến thiên vẽ đồ thị hàm số Viết phương trình tiếp tuyến đồ thị (C) điểm cực đại (C)

Câu (1,5 điểm) Giải phương trình log4xlog (4 ) 52 x

Câu (1,5 điểm) Giải phương trình x2 4x 7 0 trên tập số phức

Câu (1,5 điểm) Cho hình chóp tam giác S.ABC có đáy ABC tam giác vng đỉnh B, cạnh bên SA vng góc với đáy Biết SA = AB = BC = a Tính thể tích khối chóp S.ABC

II PHẦN DÀNH CHO THÍ SINH(2,0 điểm)

A Theo chương trình nâng cao chọn câu 5a hoặc câu 5b

Câu 5a (2,0 điểm) Tính tích phân

2

2 

xdx

J

x .

2 Tìm giá trị lớn giá trị nhỏ hàm số

3 8 16 9

   

y x x x [1; 3].

Câu 5b (2,0 điểm) Trong không gian với hệ toạ độ Oxyz, cho điểm M (1; 1; 0) (P) : x + y – 2z – =

1 Viết phương trình mặt phẳng (Q) qua điểm M song song với mặt phẳng (P)

2 Viết phương trình tham số đường thẳng (d) qua điểm M vng góc với mặt phẳng (P) Tìm toạ độ giao điểm H đường thẳng (d) với mặt phẳng (P)

B Theo chương trình chuẩn chọn câu 6a câu 6b

Câu 6a (2,0 điểm) Tính tích phân

3

1

2 ln 

K x xdx

2 Tìm giá trị lớn giá trị nhỏ hàm số

3

( )  1

f x x x [0 ; 2].

Câu 6b (2,0 điểm) Trong không gian với hệ toạ độ Oxyz, cho điểm E (1; 2; 3) mặt phẳng (a) : x + 2y –

2 Biện luận theo m số nghiệm thực phương trình

3

2x 3 1x  m.

Câu (1,5 điểm) Giải phương trình 32 1 9.3 6 0

  

x x

Câu (1 điểm) Tính giá trị biểu thức

2

(1 ) (1 )

   

P i i .

Câu (2 điểm) Cho hình chóp tam giác S.ABC có cạnh đáy a, cạnh bên 2a Gọi I trung điểm cạnh BC

1) Chứng minh SA vng góc với BC 2) Tính thể tích khối chóp S.ABI theo a

II PHẦN DÀNH CHO THÍ SINH (2,0 điểm)

A Theo chương trình nâng cao chọn câu 5a hoặc câu 5b

Câu 5a (2,0 điểm) Tính tích phân

1

2

(1 )

 

I x x dx

2 Tìm giá trị lớn giá trị nhỏ hàm số cos

 

y x x đoạn [0; ]2 .

Câu 5b (2,0 điểm) Trong không gian với hệ toạ độ Oxyz, cho điểm A(3; 2; 2) (P) : 2x 2y + z 1 = 1) Viết phương trình đường thẳng qua điểm A vng góc với mặt phẳng (P)

2) Tính khoảng cách từ điểm A đến mặt phẳng (P) Viết phương trình mặt phẳng (Q) cho (Q) song song với (P) khoảng cách (P) (Q) khoảng cách từ điểm A đến (P)

B Theo chương trình chuẩn chọn câu 6a câu 6b

Câu 6a (2,0 điểm)

1 Tính tích phân

2

0

(2 1) cos

 

K x xdx

2 Tìm giá trị lớn giá trị nhỏ hàm số

4

( )  1

f x x x [0; 2].

Câu 6b (2,0 điểm) Trong không gian với hệ toạ độ Oxyz, cho ABC với A(1; 4; 1), B(2; 4; 3) C(2; 2; 1)

1) Viết phương trình mặt phẳng qua A vng góc với đường thẳng BC

(16)

2z + =

1 Viết phương trình mặt cầu (S) có tâm gốc toạ độ O tiếp xúc với mặt phẳng (a)

Ngày đăng: 18/04/2021, 06:12

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w