1. Trang chủ
  2. » Trung học cơ sở - phổ thông

Cac phuong trinh luong giac chua tham so

2 42 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 108,64 KB

Nội dung

[r]

(1)

PHƯƠNG TRÌNH LƯỢNG GIÁC CHỨA THAM SỐ Bài 1: Cho phương trình 2sin15x cos5x sin 5x k (1)  Giải phương trình (1) k = k =

Bài 2: Tìm m để phươgn trình msinx + (m + 1)cosx + = có hai nghiệm cách /2 thuộc [0 ; 2]

Bài 3: Cho phương trình

2

5 4sin x

6 tan

sinx tan

 

   

  

 

a) Giải phương trình với   / b) Tìm α để phương trình có nghiệm

Bài 4: Tìm m để nghiệm phương trình sinx + mcosx = nghiệm phương trình msinx + cosx = m2

Bài 5: Giải biện luận theo m phương trình

2

2m.(cosx sin x) 2m cos x sin x

    

Bài 6: Tìm m để phương trình 2sin2x – sinx.cosx – cos2x = m có nghiệm; giải

phương trình m = -1

Bài 7: Tìm m để phương trình sau có nghiệm

x 0, 

 

  

3

(4 6m)sin x 3(2m 1)sin x 2(m 2)sin xcosx (4m 3)cos x 0        Bài 8: Cho phương trình :   

3 3

8a 1 sin x 4a 1 sinx 2a.cos x 0  a) Giải phương trình a =

b) Giải biện luận phương trình theo tham số a Bài 9: Cho phương trình

1

cos x sin x tan x cotx a

cos x sin x

     

a) Giải phương trình a = -2

b) Tìm a để phương trình vơ nghiệm

Bài 10: Cho phương trình: sin 2x 4(cos x sin x) m   a) Giải phương trình m =

b) Tìm m để phương trình có nghiệm

Bài 11: Giải phương trình cos x sin x k.sin xcosx3   k  2 ; tìm k để phương trình có nghiệm

Bài 12: Tìm m để phương trình: cos2x + sin2x + mcosx + = có nghiệm.

Bài 13: Tìm m để phương trình sau vơ nghiệm.

1 tan x

cos4x m

2 1 tan x 

Bài 14: Giải biện luận phương trình sau theo tham số m sin4x + cos4x + sin2x + m = 0

Bài 15: Tìm a để phương trình sin6x + cos6x = a(sin4x + cos4x) có nghiệm Giải

(2)

Bài 16.Giải phương trình sin6x + cos6x = asin2x a = 1; tìm a để phương trình

có nghiệm

Bài 17: Cho phương trình : 4cos5x.sinx – 4sin5x.cosx = sin24x + m

a) Biết x =  nghiệm, phương trình

b) Biết x = -/8 nghiệm, tìm nghiệm thoả mãn x4 – 3x2 + < 0

Bài 18: Giải biện luận phương trình

2

6

cos x sin x m.cot 2x

cos x sin x 

 theo m

Bài 19: Giải phương trình sinx cosx 4sin 2x m m = 0; tìm m để

phương trình có nghiệm

Bài 20: Tìm m để phương trình 2cosx  2sinx m  có nghiệm

Bài 21: Giải biện luận theo m phương trình: sinx  sinx m.cosx

Bài 22: Biện luận theo m số nghiệm x [- ; ]4

  

phương trình 4m(sin6x + cos6x - 1) = 3sin6x

HD: Đặt sin2x = t sau khảo sát hàm số đoạn [-1 ; 1]

Bài 23: Tìm m để phương trình sau có nhiều nghiệm khoảng

(0 ; /2):  

2

1 m tan x 3m

cos x

    

Bài 24: Tìm m để phương trình cos2x – (2m + 1)cosx + m + = có nghiệm

thuộc khoảng ; 2  

 

 

 

Bài 25: Tìm m để phương trình

2sinx m sin x

 

 có hai nghiệm thoả mãn điều kiện: x 

Bài 26: Chứng minh với a, b, c cho trước phương trình

a.cos3x + b.cos2x + c.cosx + sinx = có nghiệm [0 ; 2]

Bài 27: Cho phương trình : 2cos2x + sin2x.cosx + sinx.cos2x = m(sinx + cosx)

a) Giải phương trình m =

b) Tìm m để phương trình có nghiệm thuộc [0 ; /2]

Bài 28: Tìm m để phương trình sau có nghiệm thuộc [0 ; /2]

m(sinx + cosx + 1) = + sinx.cosx

Bài 29: Tìm m để phương trình sau có hai nghiệm thuộc [0 ; 3/4]

sin2x + m = sinx + 2m.cosx

Bài 30: Tìm m để phương trình sau có hai nghiệm thuộc [0 ; ]

Ngày đăng: 12/04/2021, 03:51

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w