• Khi xét độ dài ba đoạn thẳng có thoả mãn bất đẳng thức tam giác hay không, ta chỉ cần so sánh độ. dài lớn nhất với tổng hai độ dài còn lại , hoặc so sánh độ dài nhỏ[r]
(1)Tiết 52: QUAN HỆ GIỮA BA CẠNH CỦA TAM GIÁC, BẤT ĐẲNG THỨC TAM GIÁC
Tiết 52: QUAN HỆ GIỮA BA CẠNH CỦA
TAM GIÁC, BẤT ĐẲNG THỨC TAM GIÁC
Học xong học sinh biết
• Ơn lại cách dựng tam giác biết độ dài ba cạnh
• Định lí quan hệ ba cạnh tam giác • Hệ quan hệ ba
cạnh tam giác
• Biết vận dụng định lí hệ để làm tập
GHI NHỚ
(2)Khởi động 1
•Có 12 que diêm
(3)(4)(5)Khởi động 2
Dựng tam giác biết ba cạnh
4cm, 3cm, 2cm
(6)B C
(7)B C
(8)B C
I
I I I I I
I I I I I
I
I I I
I
I
I I I
I I
I I I
I I
I I I
I
I I I I I
0 3 A
I I I I
I I I
I I I
I I I I
I I I
I I I
I I I I
I I I
I I I
I I I I
I I
(9)Tiết 52: QUAN HỆ GIỮA BA CẠNH CỦA TAM GIÁC, BẤT ĐẲNG THỨC TAM GIÁC
Tiết 52: QUAN HỆ GIỮA BA CẠNH CỦA
TAM GIÁC, BẤT ĐẲNG THỨC TAM GIÁC
Học xong học sinh biết
• Ôn lại cách dựng tam giác biết độ dài ba cạnh
• Định lí quan hệ ba cạnh tam giác • Hệ quan hệ ba
cạnh tam giác
• Biết vận dụng định lí hệ để làm tập
GHI NHỚ
(10)1 Bất đẳng thức tam giác
(11)C B
Vẽ tam giác ABC biết độ dài ba cạnh AB=2cm,BC=4cm,AC=1cm
(12)C B
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
(13)C B
Vẽ tam giác ABC biết độ dài ba cạnh AB=2cm,BC=4cm,AC=1cm
(14)Từ khởi động 1, ?1 có nhận xét gì ba cạnh tam giác?
• Khởi động 1: ; ; (có tam giác)
; ; (có tam giác)
; ; (khơng có tam giác) ; ; (khơng có tam giác)
• Khởi động 2: ; ; (có tam giác)
(15)Qua cho thấy
không phải ba độ dài nào cạnh
(16)Định lí : Trong tam giác, tổng độ dài hai cạnh lớn độ dài cạnh lại
A
B C
Cho tam giác ABC ta có bất đẳng thức sau:
(17)Học sinh thực hiện ?2
giấy trong
Học sinh thực hiện ?2
giấy trong
(18)A B C GT KL ∆ABC AB+AC>BC AB+BC>AC AC+BC>AB D
Ta chứng minh đẳng thức đầu tiên, đẳng thức sau các em tự chứng minh
Trên tia đối tia AB, lấy điểm D cho
AD=AC
Có nhận xét vị trí ba tia BC, AC, DC? Từ so sánh góc BCD với góc ACD.
AC nằm CB CD nên BCD >
ACD
Có nhận xét góc ACD góc D ? Từ so sánh góc BCD với góc D
∆ACD cân A (AC=AD) nên ACD =D
=> BCD
> D
Có nhận xét cạnh BD BC tam giác BDC ? Từ so sánh AB+AC với BC
=>BD>BC mà
BD=AB+AD=AB+AC AB+AC>BC
Các bất đẳng thức kết luận gọi bất đẳng thức tam giác
(19)Tiết 52: QUAN HỆ GIỮA BA CẠNH CỦA TAM GIÁC, BẤT ĐẲNG THỨC TAM GIÁC
Tiết 52: QUAN HỆ GIỮA BA CẠNH CỦA
TAM GIÁC, BẤT ĐẲNG THỨC TAM GIÁC
Học xong học sinh biết
• Định lí quan hệ ba cạnh tam giác • Hệ quan hệ ba
cạnh tam giác
• Biết vận dụng định lí hệ để làm tập
GHI NHỚ
(20)(21)Một học sinh cho ba số đo 3cm, 4cm,
8cm số đo ba cạnh của tam giác 3+8>4 Theo em
(22)Học sinh hoạt động nhóm 15 giấy trong, có giải thích
Bộ ba đoạn thẳng là ba cạnh tam giác:
• a) 2cm ; 3cm ; 6cm • b) 2cm ; 4cm ; 6cm • c) 3cm ; 4cm ; 6cm
(23)Cơng việc nhà
• Học thuộc định lí
• Làm tập 18,19/63
• Xem trước phần hệ quả.
• Học thuộc định lí
• Làm tập 18,19/63
(24)Tiết 53: QUAN HỆ GIỮA BA CẠNH CỦA TAM GIÁC, BẤT ĐẲNG THỨC TAM GIÁC
Tiết 53: QUAN HỆ GIỮA BA CẠNH CỦA
TAM GIÁC, BẤT ĐẲNG THỨC TAM GIÁC
Học xong học sinh biết
• Định lí quan hệ ba cạnh tam giác • Hệ quan hệ ba
cạnh tam giác
• Biết vận dụng định lí hệ để làm tập
GHI NHỚ
(25)2 Hệ bất đẳng thức tam giác:
Từ định lí : AB+AC>BC AB+BC>AC AC+BC>AB
Hãy điền vào chỗ trống
AB > AC - BC AB > BC - AC AC > AB - BC AC > BC - AB BC > AB - AC BC > AC - AB
… … … … … … =>
Từ rút hệ quả ba cạnh tam
(26)Hệ quả: Trong tam giác, hiệu độ dài hai
cạnh cũng nhỏ độ dài
(27)Tiết 53: QUAN HỆ GIỮA BA CẠNH CỦA TAM GIÁC, BẤT ĐẲNG THỨC TAM GIÁC
Tiết 53: QUAN HỆ GIỮA BA CẠNH CỦA
TAM GIÁC, BẤT ĐẲNG THỨC TAM GIÁC
Học xong học sinh biết
• Định lí quan hệ ba cạnh tam giác • Hệ quan hệ ba
cạnh tam giác
• Biết vận dụng định lí hệ để làm tập
GHI NHỚ
1) Bất đẳng thức tam giác Định lí:
• AB+AC>BC • AB+BC>AC • AC+BC>AB
2) Hệ bất đẳng thức tam giác
• AB>AC-BC; AC>AB-BC • BC>AB-AC; AB>BC-AC • AC>BC-AB; BC>AC-AB
(28)Học sinh thực hiện ?3
giấy trong
(29)Học sinh đọc lưu ý sách giáo khoa:
• Khi xét độ dài ba đoạn thẳng có thoả mãn bất đẳng thức tam giác hay không, ta cần so sánh độ
dài lớn với tổng hai độ dài còn lại , so sánh độ dài nhỏ
(30)Học sinh thực hiên 16
trên giấy trong
•Ta có 1+7>AB>7-1 => 8>AB>6 => AB=7
(31)Học sinh theo dõi hướng dẫn
(32)A
B C
.M
I
a)MA<MI+IA=> MA+MB<MB+MI+IA => MA+MB<IB+IA(1)
b)IB<IC+BC=> IB+IA<IA+IC+BC =>IB+IA<CA+CB(2)
(33)Tiết 53: QUAN HỆ GIỮA BA CẠNH CỦA TAM GIÁC, BẤT ĐẲNG THỨC TAM GIÁC
Tiết 53: QUAN HỆ GIỮA BA CẠNH CỦA
TAM GIÁC, BẤT ĐẲNG THỨC TAM GIÁC CÔNG VIỆC Ở NHÀ
• Học thuộc định lí và hệ bất đẳng thức tam giác • Soạn tập 17,
18, 19, 20, 21, 22 trang 63, 64 sách giáo khoa
TỔNG KẾT
Trong tam giác, độ dài
cạnh lớn hiệu nhỏ hơn tổng độ dài của hai cạnh lại
TỔNG KẾT
Trong tam giác, độ dài
cạnh lớn hiệu nhỏ hơn tổng độ dài của hai cạnh lại