Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 19 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
19
Dung lượng
1,69 MB
Nội dung
Chuyên đềTÍCHPHÂN CÔNG THỨC Bảng nguyên hàm Nguyên hàm của những hàm số sơ cấp thường gặp Nguyên hàm của những hàm số thường gặp Nguyên hàm của những hàm số hợp Cxdx += ∫ ( ) 1 1 1 ≠+ + = + ∫ α α α α C x dxx ( ) 0ln ≠+= ∫ xCx x dx Cedxe xx += ∫ ( ) 10 ln ≠<+= ∫ aC a a dxa x x Cxxdx += ∫ sincos Cxxdx +−= ∫ cossin Cxdx x += ∫ tan cos 1 2 Cxdx x +−= ∫ cot sin 1 2 ( ) ( ) Cbax a baxd ++=+ ∫ 1 ( ) ( ) ( ) 1 1 1 1 ≠+ + + =+ + ∫ α α α α C bax a dxbax ( ) 0ln 1 ≠++= + ∫ xCbax abax dx Ce a dxe baxbax += ++ ∫ 1 ( ) ( ) Cbax a dxbax ++=+ ∫ sin 1 cos ( ) ( ) Cbax a dxbax ++−=+ ∫ cos 1 sin ( ) ( ) Cbax a dx bax ++= + ∫ tan 1 cos 1 2 ( ) ( ) Cbax a dx bax ++−= + ∫ cot 1 sin 1 2 Cudu += ∫ ( ) 1 1 1 ≠+ + = + ∫ α α α α C u duu ( ) 0ln ≠+= ∫ uCu u du Cedue uu += ∫ ( ) 10 ln ≠<+= ∫ aC a a dxa u u Cuudu += ∫ sincos Cuudu +−= ∫ cossin Cudu u += ∫ tan cos 1 2 Cudu u +−= ∫ cot sin 1 2 I. ĐỔI BIẾN SỐ TÓM TẮT GIÁO KHOA VÀ PHƯƠNG PHÁP GIẢI TOÁN 1. Đổi biến số dạng 2 Để tính tíchphân b / a f[u(x)]u (x)dx ò ta thực hiện các bước sau: Bước 1. Đặt t = u(x) và tính / dt u (x)dx= . Bước 2. Đổi cận: x a t u(a) , x b t u(b)= Þ = = a = Þ = = b . Bước 3. b / a f[u(x)]u (x)dx f(t)dt b a = ò ò . Ví dụ 7. Tính tíchphân 2 e e dx I xlnx = ò . Giải Đặt dx t lnx dt x = Þ = 2 x e t 1, x e t 2= Þ = = Þ = 2 2 1 1 dt I ln t ln2 t Þ = = = ò . Vậy I ln2= . Ví dụ 8. Tính tíchphân 4 3 0 cosx I dx (sinx cosx) p = + ò . 1 Hướng dẫn: 4 4 3 3 2 0 0 cosx 1 dx I dx . (sinx cosx) (tanx 1) cos x p p = = + + ò ò . Đặt t tanx 1= + ĐS: 3 I 8 = . Ví dụ 9. Tính tíchphân 3 1 2 dx I (1 x) 2x 3 = + + ò . Hướng dẫn: Đặt t 2x 3= + ĐS: 3 I ln 2 = . Ví dụ 10. Tính tíchphân 1 0 3 x I dx 1 x - = + ò . Hướng dẫn: Đặt 3 2 2 2 1 3 x t dt t 8 1 x (t 1) - = Þ + + ò L ; đặt t tanu= L ĐS: I 3 2 3 p = - + . Chú ý: Phântích 1 0 3 x I dx 1 x - = + ò , rồi đặt t 1 x= + sẽ tính nhanh hơn. 2. Đổi biến số dạng 1 Cho hàm số f(x) liên tục trên đoạn [a;b], để tính ( ) b a f x dx ∫ ta thực hiện các bước sau: Bước 1. Đặt x = u(t) và tính / ( )dx u t dt= . Bước 2. Đổi cận: , x a t x b t α β = ⇒ = = ⇒ = . Bước 3. / ( ) [ ( )] ( ) ( ) b a f x dx f u t u t dt g t dt β β α α = = ∫ ∫ ∫ . Ví dụ 1. Tính tíchphân 1 2 2 0 1 I dx 1 x = - ò . Giải Đặt x sin t, t ; dx costdt 2 2 p p é ù = Î - Þ = ê ú ë û 1 x 0 t 0, x t 2 6 p = Þ = = Þ = 6 6 2 0 0 cost cost I dt dt cost 1 sin t p p Þ = = - ò ò 6 6 0 0 dt t 0 6 6 p p p p = = = - = ò . Vậy I 6 p = . Ví dụ 2. Tính tíchphân 2 2 0 I 4 x dx= - ò . 2 Hướng dẫn: Đặt x 2sint= ĐS: I = p . Ví dụ 3. Tính tíchphân 1 2 0 dx I 1 x = + ò . Giải Đặt 2 x tant, t ; dx (tan x 1)dt 2 2 æ ö p p ÷ ç = Î - Þ = + ÷ ç ÷ ÷ ç è ø x 0 t 0, x 1 t 4 p = Þ = = Þ = 4 4 2 2 0 0 tan t 1 I dt dt 4 1 tan t p p + p Þ = = = + ò ò . Vậy I 4 p = . Ví dụ 4. Tính tíchphân 3 1 2 0 dx I x 2x 2 - = + + ò . Hướng dẫn: 3 1 3 1 2 2 0 0 dx dx I x 2x 2 1 (x 1) - - = = + + + + ò ò . Đặt x 1 tan t+ = ĐS: I 12 p = . Ví dụ 5. Tính tíchphân 2 2 0 dx I 4 x = - ò . ĐS: I 2 p = . Ví dụ 6. Tính tíchphân 3 1 2 0 dx I x 2x 2 - = + + ò . ĐS: I 12 p = . 3. Các dạng đặc biệt 3.1. Dạng lượng giác Ví dụ 11 (bậc sin lẻ). Tính tíchphân 2 2 3 0 I cos xsin xdx p = ò . Hướng dẫn: Đặt t cosx= ĐS: 2 I 15 = . Ví dụ 12 (bậc cosin lẻ). Tính tíchphân 2 5 0 I cos xdx p = ò . Hướng dẫn: Đặt t sinx= ĐS: 8 I 15 = . 3 Ví dụ 13 (bậc sin và cosin chẵn). Tính tíchphân 2 4 2 0 I cos xsin xdx p = ò . Giải 2 2 4 2 2 2 0 0 1 I cos xsin xdx cos x sin 2xdx 4 p p = = ò ò 2 2 2 0 0 1 1 (1 cos4x)dx cos2xsin 2xdx 16 4 p p = - + ò ò 2 2 2 0 0 1 1 (1 cos4x)dx sin 2xd(sin2x) 16 8 p p = - + ò ò 3 2 0 x 1 sin 2x sin4x 16 64 24 32 p æ ö p ÷ ç = - + = ÷ ç ÷ ç è ø . Vậy I 32 p = . Ví dụ 14. Tính tíchphân 2 0 dx I cosx sinx 1 p = + + ò . Hướng dẫn: Đặt x t tan 2 = . ĐS: I ln2= . Biểu diễn các hàm số LG theo tan 2 a t = : 2 2 2 2 2 1 2 sin ; cos ; tan . 1 1 1 t t t a a a t t t − = = = + + − 3.2. Dạng liên kết Ví dụ 15. Tính tíchphân 0 xdx I sinx 1 p = + ò . Giải Đặt x t dx dt= p - Þ = - x 0 t , x t 0= Þ = p = p Þ = ( ) 0 0 ( t)dt t I dt sin( t) 1 sint 1 sint 1 p p p - p Þ = - = - p - + + + ò ò 0 0 dt dt I I sint 1 2 sint 1 p p p = p - Þ = + + ò ò ( ) ( ) 2 2 0 0 dt dt t t t 2 4 cos sin cos 2 4 2 2 p p p p = = p - + ò ò 2 0 0 t d 2 4 t tan 2 t 2 2 4 cos 2 4 p p æ ö p ÷ ç - ÷ ç ÷ ÷ ç æ ö è ø p p p ÷ ç = = - = p ÷ ç ÷ ÷ ç æ ö è ø p ÷ ç - ÷ ç ÷ ÷ ç è ø ò . Vậy I = p . Tổng quát: 0 0 xf(sin x)dx f(sinx)dx 2 p p p = ò ò . Ví dụ 16. Tính tíchphân 2 2007 2007 2007 0 sin x I dx sin x cos x p = + ò . Giải Đặt x t dx dt 2 p = - Þ = - 4 x 0 t , x t 0 2 2 p p = ị = = ị = ( ) ( ) ( ) 2007 0 2007 2007 2 sin t 2 I dx sin t cos t 2 2 p p - ị = - p p - + - ũ 2 2007 2007 2007 0 cos t dx J sin t cos t p = = + ũ (1). Mt khỏc 2 0 I J dx 2 p p + = = ũ (2). T (1) v (2) suy ra I 4 p = . Tng quỏt: 2 2 n n n n n n 0 0 sin x cos x dx dx ,n sin x cos x sin x cos x 4 p p + p = = ẻ + + ũ ũ Z . Vớ d 17. Tớnh tớch phõn 6 2 0 sin x I dx sinx 3cosx p = + ũ v 6 2 0 cos x J dx sinx 3cosx p = + ũ . Gii I 3J 1 3- = - (1). ( ) 6 6 0 0 dx 1 dx I J dx 2 sinx 3cosx sin x 3 p p + = = p + + ũ ũ t t x dt dx 3 p = + ị = 1 I J ln3 4 + = (2). T (1) v (2) 3 1 3 1 1 3 I ln3 , J ln3 16 4 16 4 - - = + = - . Vớ d 18. Tớnh tớch phõn 1 2 0 ln(1 x) I dx 1 x + = + ũ . Gii t 2 x tant dx (1 tan t)dt= ị = + x 0 t 0, x 1 t 4 p = ị = = ị = ( ) 4 4 2 2 0 0 ln(1 tan t) I 1 tan t dt ln(1 tant)dt 1 tan t p p + ị = + = + + ũ ũ . t t u dt du 4 p = - ị = - t 0 u , t u 0 4 4 p p = ị = = ị = 0 4 0 4 I ln(1 tant)dt ln 1 tan u du 4 p p ộ ổ ửự p ữ ỗ ờ ỳ ị = + = - + - ữ ỗ ữ ữ ỗ ờ ỳ ố ứ ở ỷ ũ ũ 4 4 0 0 1 tanu 2 ln 1 du ln du 1 tanu 1 tanu p p ổ ử ổ ử - ữ ữ ỗ ỗ = + = ữ ữ ỗ ỗ ữ ữ ữ ữ ỗ ỗ ố ứ ố ứ + + ũ ũ 5 ( ) 4 4 0 0 ln2du ln 1 tanu du ln2 I 4 p p p = - + = - ò ò . Vậy I ln2 8 p = . Ví dụ 19. Tính tíchphân 4 x 4 cosx I dx 2007 1 p p - = + ò . Hướng dẫn: Đặt x t= - ĐS: 2 I 2 = . Tổng quát: Với a > 0 , 0a > , hàm số f(x) chẵn và liên tục trên đoạn [ ] ; - a a thì x 0 f(x) dx f(x)dx a 1 a a - a = + ò ò . Ví dụ 20. Cho hàm số f(x) liên tục trên ¡ và thỏa f( x) 2f(x) cosx- + = . Tính tíchphân 2 2 I f(x)dx p p - = ò . Giải Đặt 2 2 J f( x)dx p p - = - ò , x t dx dt= - Þ = - x t , x t 2 2 2 2 p p p p = - Þ = = Þ = - [ ] 2 2 2 2 I f( t)dt J 3I J 2I f( x) 2f(x) dx p p p p - - Þ = - = Þ = + = - + ò ò 2 2 0 2 cosxdx 2 cosxdx 2 p p p - = = = ò ò . Vậy 2 I 3 = . 3.3. Các kết quả cần nhớ i/ Với a > 0 , hàm số f(x) lẻ và liên tục trên đoạn [–a; a] thì a a f(x)dx 0 - = ò . ii/ Với a > 0 , hàm số f(x) chẵn và liên tục trên đoạn [–a; a] thì a a a 0 f(x)dx 2 f(x)dx - = ò ò . iii/ Công thức Walliss (dùng cho trắc nghiệm) 6 2 2 n n 0 0 (n 1)!! , n!! cos xdx sin xdx (n 1)!! . , n!! 2 p p ỡ - ù ù ù ù ù = = ớ ù - p ù ù ù ù ợ ũ ũ neỏu n leỷ neỏu n chaỹn . Trong ú n!! c l n walliss v c nh ngha da vo n l hay chn. Chng hn: 0!! 1; 1!! 1; 2!! 2; 3!! 1.3; 4!! 2.4; 5!! 1.3.5;= = = = = = 6!! 2.4.6; 7!! 1.3.5.7; 8!! 2.4.6.8; 9!! 1.3.5.7.9; 10!! 2.4.6.8.10= = = = = . Vớ d 21. 2 11 0 10!! 2.4.6.8.10 256 cos xdx 11!! 1.3.5.7.9.11 693 p = = = ũ . Vớ d 22. 2 10 0 9!! 1.3.5.7.9 63 sin xdx . . 10!! 2 2.4.6.8.10 2 512 p p p p = = = ũ . II. TCH PHN TNG PHN 1. Cụng thc Cho hai hm s u(x), v(x) liờn tc v cú o hm trờn on [a; b]. Ta cú ( ) ( ) / / / / / / uv u v uv uv dx u vdx uv dx= + ị = + ( ) b b b a a a d uv vdu udv d(uv) vdu udvị = + ị = + ũ ũ ũ b b b b b b a a a a a a uv vdu udv udv uv vduị = + ị = - ũ ũ ũ ũ . Cụng thc: b b b a a a udv uv vdu= - ũ ũ (1). Cụng thc (1) cũn c vit di dng: b b b / / a a a f(x)g (x)dx f(x)g(x) f (x)g(x)dx= - ũ ũ (2). 2. Phng phỏp gii toỏn Gi s cn tớnh tớch phõn b a f(x)g(x)dx ũ ta thc hin Cỏch 1. Bc 1. t u f(x), dv g(x)dx= = (hoc ngc li) sao cho d tỡm nguyờn hm v(x) v vi phõn / du u (x)dx= khụng quỏ phc tp. Hn na, tớch phõn b a vdu ũ phi tớnh c. Bc 2. Thay vo cụng thc (1) tớnh kt qu. c bit: i/ Nu gp b b b ax a a a P(x)sinaxdx, P(x)cosaxdx, e .P(x)dx ũ ũ ũ vi P(x) l a thc thỡ t u P(x)= . ii/ Nu gp b a P(x)ln xdx ũ thỡ t u lnx= . Cỏch 2. 7 Viết lại tíchphân b b / a a f(x)g(x)dx f(x)G (x)dx= ò ò và sử dụng trực tiếp công thức (2). Ví dụ 1. Tính tíchphân 1 x 0 I xe dx= ò . Giải Đặt x x u x du dx dv e dx v e = = ì ì ï ï ï ï Þ í í = ï ï = ï ïî î (chọn C 0= ) 1 1 1 1 x x x x 0 0 0 0 xe dx xe e dx (x 1)e 1Þ = - = - = ò ò . Ví dụ 2. Tính tíchphân e 1 I x ln xdx= ò . Giải Đặt 2 dx du u lnx x dv xdx x v 2 ì ï = ï = ì ï ï ï ï Þ í í ï ï = ï ï î = ï ï î e e e 2 2 1 1 1 x 1 e 1 xln xdx lnx xdx 2 2 4 + Þ = - = ò ò . Ví dụ 3. Tính tíchphân 2 x 0 I e sinxdx p = ò . Giải Đặt x x u sinx du cosxdx dv e dx v e = = ì ì ïï ï ï Þ í í ï ï = = ï ï î î 2 2 x x x 2 2 0 0 0 I e sin xdx e sinx e cosxdx e J p p p p Þ = = - = - ò ò . Đặt x x u cosx du sinxdx dv e dx v e = = - ì ì ï ï ï ï Þ í í = ï ï = ï ïî î 2 2 x x x 2 0 0 0 J e cosxdx e cosx e sin xdx 1 I p p p Þ = = + = - + ò ò 2 2 e 1 I e ( 1 I) I 2 p p + Þ = - - + Þ = . Chú ý: Đôi khi ta phải đổi biến số trước khi lấy tíchphân từng phần. Ví dụ 7. Tính tíchphân 2 4 0 I cos xdx p = ò . Hướng dẫn: Đặt t x= 2 0 I 2 t costdt 2 p Þ = = = p - ò L L . 8 Ví dụ 8. Tính tíchphân e 1 I sin(lnx)dx= ò . ĐS: (sin1 cos1)e 1 I 2 - + = . III. TÍCHPHÂN CHỨA GIÁ TRỊ TUYỆT ĐỐI Phương pháp giải toán 1. Dạng 1 Giả sử cần tính tíchphân b a I f(x) dx= ò , ta thực hiện các bước sau Bước 1. Lập bảng xét dấu (BXD) của hàm số f(x) trên đoạn [a; b], giả sử f(x) có BXD: x a 1 x 2 x b f(x) + 0 - 0 + Bước 2. Tính 1 2 1 2 b x x b a a x x I f(x) dx f(x)dx f(x)dx f(x)dx= = - + ò ò ò ò . Ví dụ 9. Tính tíchphân 2 2 3 I x 3x 2 dx - = - + ò . Giải Bảng xét dấu x 3- 1 2 2 x 3x 2- + + 0 - 0 ( ) ( ) 1 2 2 2 3 1 59 I x 3x 2 dx x 3x 2 dx 2 - = - + - - + = ò ò . Vậy 59 I 2 = . Ví dụ 10. Tính tíchphân 2 2 0 I 5 4cos x 4sinxdx p = - - ò . ĐS: I 2 3 2 6 p = - - . 2. Dạng 2 Giả sử cần tính tíchphân [ ] b a I f(x) g(x) dx= ± ò , ta thực hiện Cách 1. Tách [ ] b b b a a a I f(x) g(x) dx f(x) dx g(x) dx= ± = ± ò ò ò rồi sử dụng dạng 1 ở trên. Cách 2. Bước 1. Lập bảng xét dấu chung của hàm số f(x) và g(x) trên đoạn [a; b]. Bước 2. Dựa vào bảng xét dấu ta bỏ giá trị tuyệt đối của f(x) và g(x). Ví dụ 11. Tính tíchphân ( ) 2 1 I x x 1 dx - = - - ò . Giải Cách 1. 9 ( ) 2 2 2 1 1 1 I x x 1 dx x dx x 1 dx - - - = - - = - - ò ò ò 0 2 1 2 1 0 1 1 xdx xdx (x 1)dx (x 1)dx - - = - + + - - - ò ò ò ò 0 2 1 2 2 2 2 2 1 0 1 1 x x x x x x 0 2 2 2 2 - - æ ö æ ö ÷ ÷ ç ç = - + + - - - = ÷ ÷ ç ç ÷ ÷ ç ç è ø è ø . Cách 2. Bảng xét dấu x –1 0 1 2 x – 0 + + x – 1 – – 0 + ( ) ( ) ( ) 0 1 2 1 0 1 I x x 1 dx x x 1 dx x x 1 dx - = - + - + + - + - + ò ò ò ( ) 1 2 0 2 1 1 0 x x x x 0 - = - + - + = . Vậy I 0= . 3. Dạng 3 Để tính các tíchphân { } b a I max f(x), g(x) dx= ò và { } b a J min f(x), g(x) dx= ò , ta thực hiện các bước sau: Bước 1. Lập bảng xét dấu hàm số h(x) f(x) g(x)= - trên đoạn [a; b]. Bước 2. + Nếu h(x) 0> thì { } max f(x), g(x) f(x)= và { } min f(x), g(x) g(x)= . + Nếu h(x) 0< thì { } max f(x), g(x) g(x)= và { } min f(x), g(x) f(x)= . Ví dụ 12. Tính tíchphân { } 4 2 0 I max x 1, 4x 2 dx= + - ò . Giải Đặt ( ) ( ) 2 2 h(x) x 1 4x 2 x 4x 3= + - - = - + . Bảng xét dấu x 0 1 3 4 h(x) + 0 – 0 + ( ) ( ) ( ) 1 3 4 2 2 0 1 3 80 I x 1 dx 4x 2 dx x 1 dx 3 = + + - + + = ò ò ò . Vậy 80 I 3 = . Ví dụ 13. Tính tíchphân { } 2 x 0 I min 3 , 4 x dx= - ò . Giải Đặt ( ) x x h(x) 3 4 x 3 x 4= - - = + - . Bảng xét dấu x 0 1 2 h(x) – 0 + ( ) 1 2 2 1 x 2 x 0 1 0 1 3 x 2 5 I 3 dx 4 x dx 4x ln3 2 ln3 2 æ ö ÷ ç = + - = + - = + ÷ ç ÷ ç è ø ò ò . 10 . Chuyên đề TÍCH PHÂN CÔNG THỨC Bảng nguyên hàm Nguyên hàm của những hàm số sơ cấp thường. tích phân từng phần. Ví dụ 7. Tính tích phân 2 4 0 I cos xdx p = ò . Hướng dẫn: Đặt t x= 2 0 I 2 t costdt 2 p Þ = = = p - ò L L . 8 Ví dụ 8. Tính tích phân