1. Trang chủ
  2. » Giáo án - Bài giảng

Hàm sô liên tục

17 176 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 17
Dung lượng 363,5 KB

Nội dung

kiến thức cơ bản kiến thức cơ bản Định nghĩa hàm số liên tục tại một điểm. Định nghĩa hàm số liên tục tại một điểm. Cho hàm số f(x) xác định trên (a,b). Hàm số f(x) được gọi là liên tục tại điểm x 0 (a,b) nếu: lim f(x) = f(x 0 ) x x 0 Định nghĩa hàm số liên tục trên một khoảng Hàm số f(x) xác định trên khoảng (a,b) được gọi là liên tục trên khoảng đó nếu nó liên tục tại mọi điểm của khoảng ấy. Định nghĩa hàm số liên tục trên một đoạn Hàm số f(x) xác định trên đoạn [a,b] đư ợc gọi là liên tục trên đoạn đó nếu nó liên tục trên khoảng (a,b) và lim f(x) = f(a) ; lim f(x) = f(b) x a+ x b- Một số hàm số thường gặp liên tục trên Một số hàm số thường gặp liên tục trên tập xác định của nó tập xác định của nó + Hàm đa thức + Hàm đa thức + Hàm số hữu tỉ + Hàm số hữu tỉ + Hàm số lượng giác + Hàm số lượng giác bµi tËp bµi tËp 2x 2 -3x+1 víi x > 0 f(x) = 1-x 2 víi x 0  xÐt sù liªn tôc cña hµm sè trªn R Giải: với x 0 f(x) là các hàm đa thức nên nó liên tục với x= 0 lim f(x) = lim (2x 2 -3x+1) = 1 x 0 x 0 f(0) = 1 Vậy lim f(x) = f(0) hàm số liên tục x 0 tại x = 0. Do đó f(x) liên tục trên toàn trục số Giải: với x 0 f(x) là các hàm đa thức nên nó liên tục với x= 0 lim f(x) = lim (2x 2 -3x+1) = 1 x 0 + x 0 + lim f(x) = lim (1-x 2 ) = 1 x 0 - x 0 - f(0) = 1 Vậy lim f(x) = lim f(x)= f(0) x 0 + x->0 - hàm số liên tục tại x = 0. Do đó f(x) liên tục trên toàn trục số [...]... -2 4 không có giá trị nào của a thoả mãn đề bài Hệ quả: Nếu hàm số f(x) là liên tục trên đoạn [a;b] và f(a).f(b) < 0 thì tồn tại ít nhất một điểm c (a;b) sao cho f(c) = 0 Nói cách khác: Nếu hàm số f(x) là liên tục trên đoạn [a;b] và f(a).f(b) < 0 thì phư ơng trình f(x) = 0 có ít nhất một nghiệm trên khoảng (a;b) Hãy xét sự liên tục của hàm số tại x = 0 . Định nghĩa hàm số liên tục tại một điểm. Định nghĩa hàm số liên tục tại một điểm. Cho hàm số f(x) xác định trên (a,b). Hàm số f(x) được gọi là liên tục tại. Một số hàm số thường gặp liên tục trên Một số hàm số thường gặp liên tục trên tập xác định của nó tập xác định của nó + Hàm đa thức + Hàm đa thức + Hàm số

Ngày đăng: 17/10/2013, 01:11

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN